ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Виды и классификация разрушенийРазрушение представляет собой чрезвычайно сложный, многостадийный процесс, управляемый большим количеством факторов. В зависимости от изменяющихся условий можно получить весьма различные характеристики процесса разрушения. О сложности и неоднозначности явления свидетельствует тот факт, что нет общепринятого определения разрушения и общепринятой классификации видов разрушения. В общем случае механическое разрушение может быть определено как любое изменение размера, формы или свойств материала конструкции, машины или отдельной детали, в результате которого она утрачивает способность удовлетворительно выполнять свои функции. Основываясь на этом, вид разрушения можно определить как физический процесс или несколько взаимосвязанных между собой процессов, приводящих к разрушению. Рассмотрим наиболее известные попытки классификации видов и типов разрушения. Проф. Старки (W. L. Starkey) из Университета шт. Огайо предложил систему классификации всех возможных видов разрушения. Эта система основана на учете трех факторов: (1) характера разрушения, (2) причин разрушения и (3) места разрушения. Подробно эти факторы определяются ниже. Каждый отдельный вид разрушения характеризуется тем, как появляется разрушение, что его вызывает и где оно происходит. Используя различные комбинации этих факторов, можно указать буквально сотни видов разрушения. Чтобы подробнее пояснить суть этой системы классификации, раскроем содержание каждого из этих трех факторов. По характеру разрушения можно выделить четыре класса (причем некоторые из них могут состоять из подклассов): 1. Упругая деформация. 2. Пластическая деформация. 3. Разрыв, или разделение на части. 4. Изменение материала: (А) металлургическое; (В) химическое; (C) ядерное. По причинам разрушения можно определить четыре класса: 1. Нагрузки: (А) установившиеся; (В) неустановившиеся; (С) циклические; (D) случайные. 2. Время процесса: (А) очень малое; (В) малое; (С) продолжительное. 3. Температуры: (А) низкие; (В) комнатные; (С) повышенные; (D) установившиеся; (Е) неустановившиеся; (F) циклические; (G) случайные. 4. Воздействия окружающей среды: (А) химические; (В) ядерные. По месту разрушения существует два типа разрушения: (А) объемное; (В) поверхностное. Для точного описания какого-либо вида разрушения необходимо выбрать характеристики процесса из указанного перечня, не упуская из виду ни одного из трех основных факторов. Например, для описания разрушения в качестве характерного проявления можно выбрать пластическую деформацию, в качестве причин — установившуюся нагрузку и комнатную температуру, а в качестве типа — объемный тип разрушения. Таким образом, указанный вид разрушения можно определить как объемное пластическое деформирование под действием установившейся нагрузки при комнатной температуре. Такой вид разрушения обычно называется течением. Отметим, однако, что термин течение обычно определяет не только указанный вид разрушения: этот термин имеет более общий смысл. Используя перечисленные классы и подклассы трех основных факторов, определяющих вид разрушения, можно дать определение многих других видов разрушения. Приведенный перечень характеристик процесса разрушения нуждается в дополнительном пояснении и конкретизации, особенно применительно к наиболее опасным видам разрушения. Ниже перечислены двадцать три таких вида разрушения. Нижеследующий перечень содержит наиболее часто встречающиеся на практике виды разрушения. Глядя на этот перечень, можно заметить, что некоторые виды разрушения являются простым процессом, в то время как другие представляют собой сложные явления. Например, в этом перечне в качестве видов разрушения указаны коррозия и усталость, а наряду с этим в качестве еще одного вида разрушения указана коррозионная усталость. Это сделано потому, что и коррозия, и усталость часто оказывают существенное влияние на поведение конструкций, причем механизмы их действия взаимосвязаны. Это означает, например, что при коррозионной усталости коррозия ускоряет процесс усталости, а действие циклических усталостных нагрузок в свою очередь ускоряет процесс коррозии. В приведенном перечне содержатся все обычно наблюдаемые виды механического разрушения. 1. Упругая деформация, вызванная действием внешних нагрузок и (или) температуры. 2. Текучесть. 3. Бринелирование. 4. Вязкое разрушение. 5. Хрупкое разрушение. 6. Усталость: (А) многоцикловая; (В) малоцикловая; (С) термическая; (D) поверхностная; (Е) ударная; (F) коррозионная; (Q) фреттинг-усталость. 7. Коррозия: (А) химическая; (В) электрохимическая; (С) щелевая; (D) точечная (питтинговая); (Е) межкристаллическая; (F) избирательное выщелачивание; (G) эрозионная; (Н) кавитационная; (I) водородное повреждение; (J) биологическая; (К) коррозия под напряжением. 8. Износ: (А) адгезионный; (В) абразивный; (С) коррозионный; (D) поверхностный усталостный; (Е) деформационный; (F) ударный; (G) фреттинг-износ. 9. Разрушения при ударе: (А) разрыв при ударе; (В) деформирование при ударе; (С) ударный износ; (D) ударный фреттинг; (Е) усталость при ударе. 10. Фреттинг: (А) фреттинг-усталость; (В) фреттинг-износ; (С) фреттинг-коррозия. 11. Ползучесть. 12. Термическая релаксация. 13. Разрыв при кратковременной ползучести. 14. Тепловой удар. 15. Заедание и схватывание. 16. Откол. 17. Радиационное повреждение. 18. Выпучивание. 19. Выпучивание при ползучести. 20. Коррозия под напряжением. 21. Коррозионный износ. 22. Коррозионная усталость. 23. Ползучесть с усталостью. Ниже дается краткое определение с соответствующими пояснениями видов механического разрушения. Упругая деформация, вызванная действием внешних нагрузок и (или) температур. Этот вид разрушения имеет место, когда упругая (обратимая) деформация элемента, возникающая при действии эксплуатационных нагрузок и температур, становится настолько большой, что элемент утрачивает способность выполнять предназначенную ему функцию. Текучесть имеет место, когда пластическая (необратимая) деформация пластичного элемента, возникающая при действии эксплуатационных нагрузок, становится настолько большой, что элемент утрачивает способность выполнять предназначенные ему функции. Бринелирование, или разрушение вдавливанием, происходит, когда статические усилия в месте контакта криволинейных поверхностей приводят к появлению локальных пластических деформаций у одного или у обоих соприкасающихся элементов, в результате чего происходит необратимое изменение формы поверхности. Например, если шарикоподшипник статически нагружен так, что шарик вдавливается в обойму, пластически деформируя ее, то поверхность обоймы становится волнистой. При дальнейшем использовании подшипника могут возникнуть недопустимые вибрации, шум и перегрев, т. е. налицо его разрушение. Вязкое (пластическое) разрушение наблюдается, когда пластическая деформация пластичного элемента достигает такой величины, что он разделяется на две части. Разрушение происходит в результате процесса зарождения, слияния и распространения внутренних пор, поверхность разрушения при этом гладкая и волнистая. Примером пластического разрушения может служить разрыв образца из отожженной меди после 100% сужения шейки при растяжении, происходящий в результате утраты способности материала сопротивляться пластической деформации. Хрупкое разрушение происходит, когда упругая деформация элемента из хрупкого материала достигает такой величины, что разрушаются первичные межатомные связи и элемент разделяется на две или более части. Внутренние дефекты и образующиеся трещины быстро распространяются до полного разрушения; поверхность разрушения при этом неровная, зернистая. Хрупкое разрушение подразделяется на идеально хрупкое и квазихрупкое (как бы хрупкое). Идеально хрупкое или хрупкое разрушение происходит без пластической деформации. После разрушения можно заново составить тело прежних размеров из осколков зазоров между ними. Квазихрупкоеразрушение предполагает наличие пластической зоны перед краем трещины (локальная зона пластической деформации) и наклепанного материала у поверхности трещины. Остальной, значительно больший по величине, объем тела находится при этом в упругом состоянии. Термин усталостьприменяется для обозначения разрушения в виде неожиданного внезапного разделения детали или элемента машины на две или более части в результате действия в течение некоторого времени циклических нагрузок или деформаций. Разрушение происходит путем зарождения и распространения трещины, которая после достижения некоторого критического размера становится неустойчивой и быстро увеличивается, вызывая разрушение. Нагрузки и деформации, при которых обычно происходит усталостное разрушение, намного ниже тех, которые приводят к разрушению в статических условиях. Когда величины нагрузок и перемещений таковы, что разрушение происходит более чем через 10 000 циклов, явление обычно называется многоцикловой усталостью. Когда же величины нагрузок и перемещений таковы, что разрушение происходит менее чем через 10 000 циклов, явление называется малоцикловой усталостью. Когда циклические нагрузки и деформации возникают в детали в результате действия циклически меняющегося температурного поля, явление обычно называется термической усталостью. Разрушение, называемое поверхностной усталостью, обычно происходит при наличии вращающихся контактирующих поверхностей. Проявляется оно в виде питтинга, растрескивания и выкрашивания контактирующих поверхностей в результате действия контактных напряжений, под влиянием которых на небольшой глубине у поверхности возникают максимальные по величине циклические касательные напряжения. Эти напряжения приводят к возникновению трещин, которые выходят на поверхность, при этом некоторые частицы материала отделяются. Это явление часто считается разновидностью износа. Ударная усталость, коррозионная усталость и фреттинг-усталость будут описаны ниже. Износявляется нежелательным процессом постепенного изменения размеров вследствие удаления отдельных частиц с контактирующих поверхностей при их движении, обычно скользящем, относительно друг друга. Износ является в основном результатом механического действия. Это сложный процесс, точнее даже ряд различных процессов, которые могут протекать как независимо, так и взаимосвязано. Результатом этих процессов является удаление материала с контактирующих поверхностей вследствие сложного взаимодействия локальных сдвигов, вдавливаний, сваривания материала, разрывов и других механизмов. Адгезионный изн ос происходит в результате действия высоких локальных давлений, сваривания между собой шероховатостей поверхностей, последующей пластической деформации, возникающей при их относительном перемещении, разрушения локальных сцеплений шероховатостей, удаления или переноса металла. При абразивном износе частицы удаляются с поверхности в результате режущего или царапающего действия неровностей более твердой из контактирующих поверхностей или твердых частиц, задержавшихся между поверхностями. Когда одновременно возникают условия как для адгезионного, так и для абразивного износа и коррозии, эти процессы взаимодействуют между собой и происходит коррозионный износ. Поверхностный усталостный износ представляет собой изнашивание вращающихся или скользящих относительно друг друга криволинейных поверхностей. При этом в результате действия циклических касательных напряжений на небольшой глубине у поверхности возникают микротрещины, выходящие на поверхность, откалываются макрочастицы материала и на поверхности образуются ямки. Деформационный износ происходит в результате повторного пластического деформирования изнашиваемых поверхностей, приводящего к образованию сетки трещин, при росте и объединении которых образуются частицы износа. Деформационный износ часто наблюдается при действии ударных нагрузок. Ударный износ имеет место при повторном упругом деформировании в процессе действия ударных нагрузок, образовании сетки трещин, которые растут так же, как при поверхностной усталости. Разрушение при ударе происходит, когда в результате действия неустановившихся нагрузок в детали возникают такие напряжения или деформации, что деталь уже не в состоянии выполнить предназначенную ей функцию. Разрушение происходит в результате взаимодействия волн напряжений и деформаций, являющихся следствием динамического или внезапного приложения нагрузок. Взаимодействие волн может приводить к возникновению локальных напряжений и деформаций, во много раз превышающих возникающие при статическом приложении тех же самых нагрузок. Если величины напряжений и деформаций таковы, что происходит разделение детали на две или более частей, то налицо разрыв при ударе. Если удар приводит к возникновению недопустимых упругих или пластических деформаций, такое разрушение называется деформированием при ударе. Если при повторных ударах возникают циклические упругие деформации, в результате чего появляется сетка усталостных трещин, при росте которых наблюдается описанное ранее явление поверхностной усталости, то процесс называется ударным износом. Если в результате малых относительных поперечных смещений двух поверхностей при ударе, которые могут вызываться поперечными деформациями или действием случайных малых боковых составляющих скоростей, происходит фреттинг, то разрушение называется ударным фреттингом. Усталость при ударе наблюдается, когда разрушение происходит при повторном действии ударных нагрузок вследствие образования и распространения усталостных трещин. Фреттингможет происходить на поверхности контакта двух твердых тел, прижатых друг к другу нормальной силой и совершающих относительно друг друга циклические движения малой амплитуды. Фреттингобычно имеет место в местах соединений, там, где движения не должно быть, но в результате действия вибрационных нагрузок или деформаций незначительные циклические смещения все-таки есть. Обычно отколовшиеся при фреттинге частицы материала задерживаются между контактирующими поверхностями, поскольку относительные смещения их малы. Разрушение в результате ползучестипроисходит, когда пластическая деформация элемента машины или конструкции, накопленная в течение некоторого времени действия напряжений и температуры, приводит к изменениям размеров, вследствие которых элемент не может удовлетворительно выполнять предназначенную ему функцию. При достаточно высоких температурах в поликристаллическом металле границы зерен становятся более слабыми, чем сами зерна, и значительная часть деформации ползучести происходит за счет скольжения зерен относительно друг друга. Это скольжение носит характер вязкого течения, оно затрудненокинематически, т.к. зерна имеют неправильную форму и каждое зерно встречает сопротивление со стороны соседних. Скольжение становится возможным за счет пластической деформации зерен и сопровождается появлением межзеренных трещин, приводящих к разрушению. Тепловой удар происходит, когда градиенты возникающего в детали температурного поля настолько велики, что вследствие перепадов температурных деформаций начинается текучесть или разрушение. Заеданиенаблюдается в случае, когда на две скользящие друг по другу поверхности действуют такие нагрузки и температуры, а скорость скольжения, смазка и условия окружающей среды таковы, что в результате значительной пластической деформации шероховатостей поверхностей, их сваривания, отламывания и царапающего действия происходит существенная деструкция поверхности и перенос металла с одной поверхности на другую. Заедание можно считать очень интенсивным процессом адгезионного износа. Когда указанные процессы приводят к значительному ослаблению соединения или, наоборот, к схватыванию, говорят, что соединение разрушается в результате заедания.Схватывание является, по существу, интенсивным процессом заедания, при котором контактирующие детали практически свариваются и их относительное перемещение становится невозможным. Разрушение вследствие радиационного повреждения означает, что при радиационном облучении произошли такие изменения свойств материала, что деталь уже не может выполнить своих функций. Обычно эти изменения связаны с потерей пластичности в результате облучения и служат причиной начала процесса разрушения того или иного вида. Эластомеры и полимеры обычно более подвержены радиационному повреждению, чем металлы, причем прочностные характеристики последних после радиационного облучения иногда улучшаются, хотя пластичность, как правило, уменьшается. Разрушение выпучиванием наблюдается, когда при некоторой критической комбинации величины и (или) места приложения нагрузки, а также формы и размеров детали ее перемещения или прогибы внезапно резко увеличиваются при малом изменении нагрузки. Такое нелинейное поведение приводит к разрушению выпучиванием, если потерявшая устойчивость деталь уже не может выполнять своих функций. Я.Б.Фридманом было предложено построение диаграммы механического состояния (рис. 4.1), оценивающей поведение материала при однократных кратковременных статических нагружениях. Диаграмма механического состояния Фридмана. Диаграмма учитывает (рис. 4.1) 1. Напряженное состояние, приближенно характеризуемым отношением: а) если t max >> Snmax, т.е. касательные напряжения создаются при очень малых удлинениях, то способ нагружения является мягким (например, испытание на твердость при вдавливании, осевое сжатие под гидростатическим давлением и т.п.); б) если t max << Snmax, т.е. создаются значительные упругие удлинения при малых касательных напряжениях, то способ нагружения является жестким (например, трехосное растяжение, возникающее во внутренних слоях растягиваемого надрезанного образца, в меньшей мере изгиб и растяжение); в) наконец, если то способ нагружения является средним по своей жесткости (например, кручение цилиндрического стержня, при котором при
Рисунок 4.1. Диаграмма механического состояния Я.Б.Фридмана
Величина не может исчерпывающе характеризовать вид нагружения. Назначение этой величины в том, чтобы дать сравнительную оценку опасностей двух видов нарушения прочности: от касательных напряжений (текучесть или срез) и от растягивающих (отрыв). При этом предполагается, что эти нарушения прочности определяются величинами t max и Smax. 2. Отношение сопротивления отрыву Sот к сопротивлению срезу t к: а) если Sот << t к, то материал при многих способах нагружения будет склонен к разрушению путем отрыва, как правило, хрупкому (стекла, горные породы, чугуны, твердые сплавы, пластмассы); такие материалы обычно значительно менее прочны при растяжении, чем при сжатии; б) если Sот >> t к, то материал при многих способах нагружения будет склонен к разрушению путем среза, как правило, пластичному (алюминий, медь, свинец, многие железные сплавы); 3. Разное для разных способов нагружения положение сопротивления отрыву по отношению к обобщенной кривой. Диаграмма механического состояния составляется из двух расположенных рядом частей. По оси ординат обеих частей диаграммы отложены максимальные касательные напряжения t max. По оси абсцисс отложены в левой части максимальные приведенные растягивающие напряжения Snmax, в правой – максимальные пластические сдвиги g max. Левая часть диаграммы характеризует условно жесткость или мягкость способа нагружения, в то время как правая часть диаграммы представляет собой просто обобщенную кривую течения. Какой-либо способ нагружения (в данной точке тела) изображен в левой части диаграммы лучом, имеющим определенный угол наклона. Кроме того, в левой части нанесены прямыми линиями: предел текучести t т, сопротивление срезу t к, выраженные в касательных напряжениях, и сопротивление отрыву Snот, - в приведенных напряжениях. Если условия нагружения таковы, что равенство t max = t к будет осуществлено раньше, чем Snmax = Snот, то произойдет разрушение путем среза. В этом случае по мере повышения касательного напряжения от t max = t т (переход в пластическую область) до t max = t к (срез) будет полностью “использована” обобщенная кривая течения данного материала. Если же еще до того, как будет достигнуто условие t max = t к, осуществится условие кривая t max= f (g max) “преждевременно” оборвется; пластичность g max и вязкость (пропорциональная площади кривой) окажутся пониженными, причем степень этой “преждевременности” будет тем большей, чем больше Snmax/ t max. Конечно, если материал столь хрупок, что t т = t к, то никаким изменением способа нагружения (при данной скорости и температуре деформации) его нельзя перевести в пластичное состояние и кривая t max= f (g max) у него отсутствует. Таким образом, на диаграмме механического состояния прямые t т, t к и Sот ограничивают две замкнутые области (рис. 4.2): а) упругую область, ограниченную линиями t т (переход в пластическую область), и Sот (переход к хрупкому отрыву без пересечения пластической области, т.е. при t < t т).Нижняя часть вертикальной линии Sотограничивает хрупкое состояние, т.е. отрыв без предшествующей пластической деформации; б) пластическую область, ограниченную линиями t к (разрушение путем среза) и Sот (не вполне хрупкое разрушение путем отрыва). В последнем случае отрыв происходит уже после более или менее значительной пластической деформации, которая оказывает сильное влияние на величину сопротивления отрыву.
Рис. 4.2 Схема, показывающая области упругой и пластической деформации на диаграмме механического состояния
Широко известны температурные зависимости механических свойств и характера разрушения (рис. 4.3). Рис. 4.3 Зависимость механических свойств от температуры
С понижением температур большинство малоуглеродистых и низколегированных сталей изменяет свои механические свойства. Точка пересечения кривых предела текучести и сопротивления отрыву определяет критическую температуру хрупкости согласно схеме Иоффе. С понижением температуры предел текучести и временное сопротивление повышается, а пластичность падает. По температурным зависимостям характеристик разрушения образца с трещиной можно выделить две критические температуры: первую, при 50% вязкого составляющего в изломе, и вторую, характеризующуюся точкой пересечения разрушающего напряжения и предела текучести. Принято считать, что при температурах выше первой критической возникают вязкие разрушения, при температурах ниже второй критической – хрупкие, в промежутке между критическими температурами – квазихрупкие разрушения.
Список использованных источников 1. Материаловедение. М. А. Худяков; Учеб. Пособие.- Уфа: Изд-во УГНТУ, 1999 г,162 с. 2. Конструкционные материалы Б.Н. Арзамасов, В.А. Брострем, Н.А. Буше и др.; под обшей редакцией Б.Н. Арзамасова – М.: Машиностроение, 1990г. – 688с. 3. Марочник сталей и сплавов. В.Г. Сорокин, А.В. Волосников, С.А. Вяткин и др.; Под общей редакцией В.Г. Сорокина – М.: Машиностроение, 1989г. – 640с. 4. Теория термической обработки материалов. Учебник для вузов. 4 – е издание, перераб. И допол.: Новиков И. И.: Металлургия, 1986г. – 480с. 5. Металловедение, термообработка и рентгенография. Учебник для вузов. Новиков И.И., Строганов Г.Б., Новиков А.И. – М. «МИСИС», 1994г. – 480с. 6. Материаловедение Ю.М. Лахтин, В.П. Леонтьева – М., «Альянс», 2009 – 528С. 7 Николаева Е.А. Основы механики разрушения. «Пермский государственный технический университет» 2008 – 114с Не нашли, что искали? Воспользуйтесь поиском:
|