Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Виды и классификация разрушений




Разрушение представляет собой чрезвычайно сложный, многостадийный процесс, управляемый большим количеством факторов. В зависимости от изменяющихся условий можно получить весьма различные характеристики процесса разрушения. О сложности и неоднозначности явления свидетельствует тот факт, что нет общепринятого определения разрушения и общепринятой классификации видов разрушения.

В общем случае механическое разрушение может быть опре­делено как любое изменение размера, формы или свойств материала конструкции, машины или отдельной детали, в результате которого она утрачивает способность удовлетворительно выполнять свои функции. Основываясь на этом, вид разрушения можно определить как физический процесс или несколько взаимосвязанных между собой процессов, приводящих к разрушению.

Рассмотрим наиболее известные попытки классификации видов и типов разрушения.

Проф. Старки (W. L. Starkey) из Университета шт. Огайо пред­ложил систему

классификации всех возможных видов разрушения. Эта система основана на учете трех факторов: (1) характера разру­шения, (2) причин разрушения и (3) места разрушения. Подробно эти факторы определяются ниже. Каждый отдельный вид разру­шения характеризуется тем, как появляется разрушение, что его вызывает и где оно происходит. Используя различные комбинации этих факторов, можно указать буквально сотни видов разрушения. Чтобы подробнее пояснить суть этой системы классификации, рас­кроем содержание каждого из этих трех факторов.

По характеру разрушения можно выделить четыре класса (при­чем некоторые из них могут состоять из подклассов):

1. Упругая деформация.

2. Пластическая деформация.

3. Разрыв, или разделение на части.

4. Изменение материала: (А) металлургическое; (В) химическое; (C) ядерное.

По причинам разрушения можно определить четыре класса:

1. Нагрузки: (А) установившиеся; (В) неустановившиеся; (С) циклические; (D) случайные.

2. Время процесса: (А) очень малое; (В) малое; (С) продолжи­тельное.

3. Температуры: (А) низкие; (В) комнатные; (С) повышенные; (D) установившиеся; (Е) неустановившиеся; (F) циклические; (G) случайные.

4. Воздействия окружающей среды: (А) химические; (В) ядер­ные.

По месту разрушения существует два типа разрушения: (А) объемное; (В) поверхностное.

Для точного описания какого-либо вида разрушения необходи­мо выбрать характеристики процесса из указанного перечня, не упуская из виду ни одного из трех основных факторов. Например, для описания разрушения в качестве характерного проявления можно выбрать пластическую деформацию, в качестве причин — установившуюся нагрузку и комнатную температуру, а в качест­ве типа — объемный тип разрушения. Таким образом, указанный вид разрушения можно определить как объемное пластическое де­формирование под действием установившейся нагрузки при ком­натной температуре. Такой вид разрушения

обычно называется течением. Отметим, однако, что термин течение обычно определяет не только указанный вид разрушения: этот термин имеет более общий смысл.

Используя перечисленные классы и подклассы трех основных факторов, определяющих вид разрушения, можно дать определе­ние многих других видов разрушения. Приведенный перечень ха­рактеристик процесса разрушения нуждается в дополнительном пояснении и конкретизации, особенно применительно к наиболее опасным видам разрушения. Ниже перечислены двадцать три таких вида разрушения.

Нижеследующий перечень содержит наиболее часто встречающиеся на практике виды разрушения. Глядя на этот перечень, можно за­метить, что некоторые виды разрушения являются простым про­цессом, в то время как другие представляют собой сложные явле­ния. Например, в этом перечне в качестве видов разрушения ука­заны коррозия и усталость, а наряду с этим в качестве еще одного вида разрушения указана коррозионная усталость. Это сделано потому, что и коррозия, и усталость часто оказывают существен­ное влияние на поведение конструкций, причем механизмы их дей­ствия взаимосвязаны. Это означает, например, что при коррози­онной усталости коррозия ускоряет процесс усталости, а действие циклических усталостных нагрузок в свою очередь ускоряет про­цесс коррозии. В приведенном перечне содержатся все обычно на­блюдаемые виды механического разрушения.

1. Упругая деформация, вызванная действием внешних нагрузок и (или) температуры.

2. Текучесть.

3. Бринелирование.

4. Вязкое разрушение.

5. Хрупкое разрушение.

6. Усталость: (А) многоцикловая; (В) малоцикловая; (С) термическая; (D) поверхностная; (Е) ударная; (F) коррозионная; (Q) фреттинг-усталость.

7. Коррозия: (А) химическая; (В) электрохимическая; (С) ще­левая; (D) точечная (питтинговая); (Е) межкристаллическая; (F) избирательное выщелачивание; (G) эрозионная; (Н) кавитационная; (I) водородное повреждение; (J) биологическая; (К) коррозия под напряжением.

8. Износ: (А) адгезионный; (В) абразивный; (С) коррозионный; (D) поверхностный усталостный; (Е) деформационный; (F) ударный; (G) фреттинг-износ.

9. Разрушения при ударе: (А) разрыв при ударе; (В) деформи­рование при ударе; (С) ударный износ; (D) ударный фреттинг; (Е) усталость при ударе.

10. Фреттинг: (А) фреттинг-усталость; (В) фреттинг-износ; (С) фреттинг-коррозия.

11. Ползучесть.

12. Термическая релаксация.

13. Разрыв при кратковременной ползучести.

14. Тепловой удар.

15. Заедание и схватывание.

16. Откол.

17. Радиационное повреждение.

18. Выпучивание.

19. Выпучивание при ползучести.

20. Коррозия под напряжением.

21. Коррозионный износ.

22. Коррозионная усталость.

23. Ползучесть с усталостью.

Ниже дается краткое определение с соответствующими пояснениями видов механического раз­рушения.

Упругая деформация, вызванная действием внешних нагрузок и (или) температур. Этот вид разрушения имеет место, когда уп­ругая (обратимая) деформация элемента, возникающая при дейст­вии эксплуатационных нагрузок и температур, становится настоль­ко большой, что элемент утрачивает способность выполнять пред­назначенную ему функцию.

Текучесть имеет место, когда пластическая (необратимая) де­формация пластичного элемента, возникающая при действии экс­плуатационных нагрузок, становится настолько большой, что элемент утрачивает способность выполнять предназначенные ему функции.

Бринелирование, или разрушение вдавливанием, происходит, когда статические усилия в месте контакта криволинейных поверх­ностей приводят к появлению локальных пластических деформаций у одного или у обоих соприкасающихся элементов, в результате чего происходит необратимое изменение формы поверхности. На­пример, если шарикоподшипник статически нагружен так, что ша­рик вдавливается в обойму, пластически деформируя ее, то по­верхность обоймы становится волнистой. При дальнейшем исполь­зовании подшипника могут возникнуть недопустимые вибрации, шум и перегрев, т. е. налицо его разрушение.

Вязкое (пластическое) разрушение наблюдается, когда пластическая деформа­ция пластичного элемента достигает такой величины, что он раз­деляется на две части. Разрушение происходит в результате про­цесса зарождения, слияния и распространения внутренних пор, поверхность разрушения при этом гладкая и волнистая. Примером пластического разрушения может служить разрыв образца из отожженной меди после 100% сужения шейки при растяжении, происходящий в результате утраты способности материала сопротивляться пластической деформации.

Хрупкое разрушение происходит, когда упругая деформация элемента из хрупкого материала достигает такой величины, что разрушаются первичные межатомные связи и элемент разделяется на две или более части. Внутренние дефекты и образующиеся тре­щины быстро распространяются до полного разрушения; поверх­ность разрушения при этом неровная, зернистая.

Хрупкое разрушение подразделяется на идеально хрупкое и квазихрупкое (как бы хрупкое).

Идеально хрупкое или хрупкое разрушение происходит без пластической деформации. После разрушения можно заново составить тело прежних размеров из осколков зазоров между ними.

Квазихрупкоеразрушение предполагает наличие пластической зоны перед краем трещины (локальная зона пластической деформации) и наклепанного материала у поверхности трещины. Остальной, значительно больший по величине, объем тела находится при этом в упругом состоянии.

Термин усталостьприменяется для обозначения разрушения в виде неожиданного внезапного разделения детали или элемента машины на две или более части в результате действия в течение некоторого времени циклических нагрузок или деформаций. Раз­рушение происходит путем зарождения и распространения трещи­ны, которая после достижения некоторого критического размера становится неустойчивой и быстро увеличивается, вызывая разру­шение. Нагрузки и деформации, при которых обычно происходит усталостное разрушение, намного ниже тех, которые приводят к разрушению в статических условиях. Когда величины нагрузок и перемещений таковы, что разрушение происходит более чем через 10 000 циклов, явление обычно называется многоцикловой устало­стью. Когда же величины нагрузок и перемещений таковы, что разрушение происходит менее чем через 10 000 циклов, явление называется малоцикловой усталостью.

Когда циклические нагрузки и деформации возникают в дета­ли в результате действия циклически меняющегося температурно­го поля, явление обычно называется термической усталостью. Разрушение, называемое поверхностной усталостью, обычно про­исходит при наличии вращающихся контактирующих поверхнос­тей. Проявляется оно в виде питтинга, растрескивания и выкрашивания контактирующих поверхностей в результате действия контактных напряжений, под влиянием которых на небольшой глубине у поверхности возникают максимальные по величине циклические касательные напряжения. Эти напряжения приводят к возникновению трещин, которые выходят на поверхность, при этом некоторые частицы материала отделяются. Это явление часто считается разновидностью износа. Ударная усталость, коррозион­ная усталость и фреттинг-усталость будут описаны ниже.

Износявляется нежелательным процессом постепенного изме­нения размеров вследствие удаления отдельных частиц с контак­тирующих поверхностей при их движении, обычно скользящем, относительно друг друга. Износ является в основном результатом механического действия. Это сложный процесс, точнее даже ряд различных процессов, которые могут протекать как независимо, так и взаимосвязано. Результатом этих процессов является удале­ние материала с контактирующих поверхностей вследствие слож­ного взаимодействия локальных сдвигов, вдавливаний, сваривания материала, разрывов и других механизмов.

Адгезионный изн ос происходит в результате действия высоких локальных давлений, сваривания между собой шероховатостей поверхностей, последующей пластической деформации, возникаю­щей при их относительном перемещении, разрушения локальных сцеплений шероховатостей, удаления или переноса металла. При абразивном износе частицы удаляются с поверхности в результате режущего или царапающего действия неровностей более твердой из контактирующих поверхностей или твердых частиц, задержав­шихся между поверхностями. Когда одновременно возникают усло­вия как для адгезионного, так и для абразивного износа и корро­зии, эти процессы взаимодействуют между собой и происходит кор­розионный износ.

Поверхностный усталостный износ представляет собой изнаши­вание вращающихся или скользящих относительно друг друга кри­волинейных поверхностей. При этом в результате действия цикли­ческих касательных напряжений на небольшой глубине у поверх­ности возникают микротрещины, выходящие на поверхность, отка­лываются макрочастицы материала и на поверхности образуются ямки. Деформационный износ происходит в результате повторного пластического деформирования изнашиваемых поверхностей, при­водящего к образованию сетки трещин, при росте и объединении которых образуются частицы износа. Деформационный износ часто наблюдается при действии ударных нагрузок. Ударный износ имеет место при повторном упругом деформировании в процессе действия ударных нагрузок, образовании сетки трещин, которые растут так же, как при поверхностной усталости.

Разрушение при ударе происходит, когда в результате действия неустановившихся нагрузок в детали возникают такие напряжения или деформации, что деталь уже не в состоянии выполнить предназ­наченную ей функцию. Разрушение происходит в результате взаи­модействия волн напряжений и деформаций, являющихся следст­вием динамического или внезапного приложения нагрузок. Взаи­модействие волн может приводить к возникновению локальных напряжений и деформаций, во много раз превышающих возни­кающие при статическом приложении тех же самых нагрузок. Если величины напряжений и деформаций таковы, что происходит разделение детали на две или более частей, то налицо разрыв при ударе. Если удар приводит к возникновению недопустимых упру­гих или пластических деформаций, такое разрушение называется деформированием при ударе. Если при повторных ударах возникают циклические упругие деформации, в результате чего появляется сетка усталостных трещин, при росте которых наблюдается описан­ное ранее явление поверхностной усталости, то процесс называется ударным износом.

Если в результате малых относительных поперечных смещений двух поверхностей при ударе, которые могут вызываться попереч­ными деформациями или действием случайных малых боковых составляющих скоростей, происходит фреттинг, то разрушение называется ударным фреттингом. Усталость при ударе наблюдается, когда разруше­ние происходит при повторном действии ударных нагрузок вследст­вие образования и распространения усталостных трещин.

Фреттингможет происходить на поверхности контакта двух твердых тел, прижатых друг к другу нормальной силой и совер­шающих относительно друг друга циклические движения малой амплитуды. Фреттингобычно имеет место в местах соединений, там, где движения не должно быть, но в результате действия вибрационных нагрузок или деформаций незначительные циклические смещения все-таки есть. Обычно отколовшиеся при фреттинге частицы материала задерживаются между контактирующими поверхностями, поскольку относительные смещения их малы.

Разрушение в результате ползучестипроисходит, когда пластическая деформация элемента машины или конструкции, накопленная в течение некоторого времени действия напряжений и температуры, приводит к изменениям размеров, вследствие которых элемент не может удовлетворительно выполнять предназначенную ему функцию. При достаточно высоких температурах в поликристаллическом металле границы зерен становятся более слабыми, чем сами зерна, и значительная часть деформации ползучести происходит за счет скольжения зерен относительно друг друга. Это скольжение носит характер вязкого течения, оно затрудненокинематически, т.к. зерна имеют неправильную форму и каждое зерно встречает сопротивление со стороны соседних. Скольжение становится возможным за счет пластической деформации зерен и сопровождается появлением межзеренных трещин, приводящих к разрушению.

Тепловой удар происходит, когда градиенты возникающего в детали температурного поля настолько велики, что вследствие пере­падов температурных деформаций начинается текучесть или разру­шение.

Заеданиенаблюдается в случае, когда на две скользящие друг по другу поверхности действуют такие нагрузки и температуры, а скорость скольжения, смазка и условия окружающей среды тако­вы, что в результате значительной пластической деформации шеро­ховатостей поверхностей, их сваривания, отламывания и царапающего действия происходит существенная деструкция поверхности и перенос металла с одной поверхности на другую. Заедание можно считать очень интенсивным процессом адгезионного износа. Когда указанные процессы приводят к значительному ослаблению сое­динения или, наоборот, к схватыванию, говорят, что соединение разрушается в результате заедания.Схватывание является, по существу, интенсивным процессом заедания, при котором контак­тирующие детали практически свариваются и их относительное перемещение становится невозможным.

Разрушение вследствие радиационного повреждения означает, что при радиационном облучении произошли такие изменения свойств материала, что деталь уже не может выполнить своих функ­ций. Обычно эти изменения связаны с потерей пластичности в ре­зультате облучения и служат причиной начала процесса разруше­ния того или иного вида. Эластомеры и полимеры обычно более подвержены радиационному повреждению, чем металлы, причем прочностные характеристики последних после радиационного об­лучения иногда улучшаются, хотя пластичность, как правило, уменьшается.

Разрушение выпучиванием наблюдается, когда при некоторой критической комбинации величины и (или) места приложения на­грузки, а также формы и размеров детали ее перемещения или про­гибы внезапно резко увеличиваются при малом изменении нагруз­ки. Такое нелинейное поведение приводит к разрушению выпучива­нием, если потерявшая устойчивость деталь уже не может выпол­нять своих функций.

Я.Б.Фридманом было предложено построение диаграммы механического

состояния (рис. 4.1), оценивающей поведение материала при однократных кратковременных статических нагружениях.

Диаграмма механического состояния Фридмана. Диаграмма учитывает (рис. 4.1)

1. Напряженное состояние, приближенно характеризуемым отношением:

а) если t max >> Snmax, т.е. касательные напряжения создаются при очень малых удлинениях, то способ нагружения является мягким (например, испытание на твердость при вдавливании, осевое сжатие под гидростатическим давлением и т.п.);

б) если t max << Snmax, т.е. создаются значительные упругие удлинения при малых касательных напряжениях, то способ нагружения является жестким (например, трехосное растяжение, возникающее во внутренних слоях растягиваемого надрезанного образца, в меньшей мере изгиб и растяжение);

в) наконец, если то способ нагружения является средним по

своей жесткости (например, кручение цилиндрического стержня, при котором при

 

 

 

Рисунок 4.1. Диаграмма механического состояния Я.Б.Фридмана

 

Величина не может исчерпывающе характеризовать вид нагружения.

Назначение этой величины в том, чтобы дать сравнительную оценку опасностей двух видов нарушения прочности: от касательных напряжений (текучесть или

срез) и от растягивающих (отрыв). При этом предполагается, что эти нарушения прочности определяются величинами t max и Smax.

2. Отношение сопротивления отрыву Sот к сопротивлению срезу t к:

а) если Sот << t к, то материал при многих способах нагружения будет склонен к разрушению путем отрыва, как правило, хрупкому (стекла, горные породы, чугуны, твердые сплавы, пластмассы); такие материалы обычно значительно менее прочны при растяжении, чем при сжатии;

б) если Sот >> t к, то материал при многих способах нагружения будет склонен к разрушению путем среза, как правило, пластичному (алюминий, медь, свинец, многие железные сплавы);

3. Разное для разных способов нагружения положение сопротивления отрыву по отношению к обобщенной кривой.

Диаграмма механического состояния составляется из двух расположенных рядом частей. По оси ординат обеих частей диаграммы отложены максимальные касательные напряжения t max. По оси абсцисс отложены в левой части максимальные приведенные растягивающие напряжения Snmax, в правой – максимальные пластические сдвиги g max. Левая часть диаграммы характеризует условно жесткость или мягкость способа нагружения, в то время как правая часть диаграммы представляет собой просто обобщенную кривую течения.

Какой-либо способ нагружения (в данной точке тела) изображен в левой части диаграммы лучом, имеющим определенный угол наклона. Кроме того, в левой части нанесены прямыми линиями: предел текучести t т, сопротивление срезу t к, выраженные в касательных напряжениях, и сопротивление отрыву Snот, - в приведенных напряжениях.

Если условия нагружения таковы, что равенство t max = t к будет осуществлено раньше, чем Snmax = Snот, то произойдет разрушение путем среза. В этом случае по мере повышения касательного напряжения от t max = t т (переход в пластическую область) до t max = t к (срез) будет полностью “использована” обобщенная кривая течения данного материала. Если же еще до того, как будет достигнуто условие t max = t к, осуществится условие

кривая t max= f (g max) “преждевременно” оборвется; пластичность g max и вязкость (пропорциональная площади кривой) окажутся пониженными, причем степень этой “преждевременности” будет тем большей, чем больше Snmax/ t max.

Конечно, если материал столь хрупок, что t т = t к, то никаким изменением способа нагружения (при данной скорости и температуре деформации) его нельзя перевести в пластичное состояние и кривая t max= f (g max) у него отсутствует.

Таким образом, на диаграмме механического состояния прямые t т, t к и Sот ограничивают две замкнутые области (рис. 4.2):

а) упругую область, ограниченную линиями t т (переход в пластическую область), и Sот (переход к хрупкому отрыву без пересечения пластической области, т.е. при t < t т).Нижняя часть вертикальной линии Sотограничивает хрупкое состояние, т.е. отрыв без предшествующей пластической деформации;

б) пластическую область, ограниченную линиями t к (разрушение путем среза) и Sот (не вполне хрупкое разрушение путем отрыва). В последнем случае отрыв происходит уже после более или менее значительной пластической деформации, которая оказывает сильное влияние на величину сопротивления отрыву.

 

Рис. 4.2 Схема, показывающая области упругой

и пластической деформации на диаграмме механического состояния

 

Широко известны температурные зависимости механических свойств и характера разрушения (рис. 4.3).

Рис. 4.3 Зависимость механических свойств от температуры

 

С понижением температур большинство малоуглеродистых и низколегированных сталей изменяет свои механические свойства. Точка пересечения кривых предела текучести и сопротивления отрыву определяет критическую температуру хрупкости согласно схеме Иоффе. С понижением температуры предел текучести и временное сопротивление повышается, а пластичность падает.

По температурным зависимостям характеристик разрушения образца с трещиной можно выделить две критические температуры: первую, при 50% вязкого составляющего в изломе, и вторую, характеризующуюся точкой пересечения разрушающего напряжения и предела текучести. Принято считать, что при температурах выше первой критической возникают вязкие разрушения, при температурах ниже второй критической – хрупкие, в промежутке между критическими температурами – квазихрупкие разрушения.

 

Список использованных источников

1. Материаловедение. М. А. Худяков; Учеб. Пособие.- Уфа: Изд-во

УГНТУ, 1999 г,162 с.

2. Конструкционные материалы

Б.Н. Арзамасов, В.А. Брострем, Н.А. Буше и др.; под обшей редакцией

Б.Н. Арзамасова – М.: Машиностроение, 1990г. – 688с.

3. Марочник сталей и сплавов. В.Г. Сорокин, А.В. Волосников, С.А. Вяткин и др.; Под общей редакцией В.Г. Сорокина – М.: Машиностроение, 1989г. – 640с.

4. Теория термической обработки материалов. Учебник для вузов. 4 – е издание, перераб. И допол.: Новиков И. И.: Металлургия, 1986г. – 480с.

5. Металловедение, термообработка и рентгенография. Учебник для вузов. Новиков И.И., Строганов Г.Б., Новиков А.И. – М. «МИСИС», 1994г. – 480с.

6. Материаловедение Ю.М. Лахтин, В.П. Леонтьева – М., «Альянс», 2009 – 528С.

7 Николаева Е.А. Основы механики разрушения. «Пермский

государственный технический университет» 2008 – 114с






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных