Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






СТРУКТУРА И ФУНКЦИИ БИОСФЕРЫ




 

Биосфера представляет собой многоуровневую систему, включающую подсистемы различной степени сложности. Границы биосферы определяются областью распространения организмов в атмосфере, гидросфере и литосфере (рис. 24.1). Верхняя граница биосферы проходит примерно на высоте 20 км. Таким образом, живые организмы расселены в тропосфере и в нижних слоях стратосферы. Лимитирующим фактором расселения в этой среде является нарастающая с высотой интенсивность ультрафиолетовой радиации. Практически все живое, проникающее выше озонового слоя атмосферы, погибает. В гидросферу биосфера проникает на всю глубину Мирового океана, что подтверждает обнаружение живых организмов и органических отложений до глубины 10—11 км. В литосфере область распространения жизни во многом определяет уровень проникновения воды в жидком состоянии — живые организмы обнаружены до глубины примерно 7,5 км.

Атмосфера. Эта оболочка состоит в основном из азота и кислорода. В меньших концентрациях она содержит углекислый газ и озон. Состояние атмосферы оказывает большое влияние на физические, химические и особенно биологические процессы на земной поверхности и в водной среде. Наибольшее значение для биологических процессов имеют кислород атмосферы, используемый для дыхания организмов и минерализации омертвевшего органического вещества, углекислый газ, расходуемый при фотосинтезе, а также озон, экранирующий земную поверхность от жесткого ультрафиолетового излучения. Вне атмосферы существование живых организмов невозможно. Это видно на примере лишенной жизни Луны, у которой нет атмосферы. Исторически развитие атмосферы связано с геохимическими процессами, а также жизнедеятельностью организмов. Так, азот, углекислый газ, пары воды образовались в процессе эволюции планеты благодаря (в значительной мере) вулканической активности, а кислород — в результате фотосинтеза.

Гидросфера. Вода является важной составной частью всех компонентов биосферы и одним из необходимых факторов существования живых организмов. Основная ее часть (95%) заключена в Мировом океане, который занимает примерно 70% поверхности Земного шара. Общая масса океанических вод составляет свыше 1300 млн. км3. Около 24 млн. км3 воды содержится в ледниках, причем 90% этого объема приходится на ледяной покров Антарктиды. Столько же воды содержится под землей. Поверхностные воды озер составляют приблизительно 0,18 млн. км3 (из них половина соленые), а рек—0,002 млн. км3.

Количество воды в телах живых организмов достигает примерно 0,001 млн. км3. Из газов, растворенных в воде, наибольшее значение имеют кислород и углекислый газ. Количество кислорода в океанических водах изменяется в широких пределах в зависимости от температуры и присутствия живых организмов. Концентрация углекислого газа также варьирует, а общее количество его в океане в 60 раз превышает его содержание в атмосфере. Гидросфера формировалась в связи с развитием литосферы, выделившей за геологическую историю Земли значительный объем водяного пара и так называемых ювенильных (подземных магматических) вод.

 

 

Рис. 24.1. Область распространения организмов в биосфере:

1 —уровень озонового слоя, задерживающего жесткое ультрафиолетовое излучение, 2— граница снегов, 3— почва, 4— животные, обитающие в пещерах, 5— бактерии в нефтяных скважинах

Литосфера. Основная масса организмов, обитающих в пределах литосферы, сосредоточена в почвенном слое, глубина которого обычно не превышает нескольких метров. Почвы, будучи, по терминологии В.И. Вернадского, биокосным веществом, представлены минеральными веществами, образующимися при разрушении горных пород, и органическими веществами — продуктами жизнедеятельности организмов.

Живые организмы (живое вещество). В настоящее время описано около 300 тыс. видов растений и более 1,5 млн. видов животных. Из этого количества 93% представлено сухопутными, а 7% — водными видами животных. Суммарная биомасса организмов сухопутных видов образована на 99,2% зелеными растениями (2,4 • 1012 т) и на 0,8% животными и микроорганизмами (0,2 • 1011 т). В океане, напротив, на долю растений приходится 6,3% (0,2 • 109 т), а на долю животных и микроорганизмов — 93,7% (0,3 • 1010 т) совокупной биомассы. Несмотря на то что океан покрывает немногим более 70% поверхности планеты, в нем содержится лишь 0,13% биомассы всех живых существ, обитающих на Земле.

Расчеты показывают, что растения составляют около 21% всех учтенных видов. Однако на их долю приходится более 99% биомассы, тогда как вклад животных в биомассу планеты (79% видов) составляет менее 1%. Среди животных 96% видов приходится на долю беспозвоночных и только 4% на долю позвоночных, среди которых млекопитающие составляют примерно 10%.

Приведенные соотношения иллюстрируют фундаментальную закономерность организации биосферы: в количественном отношении преобладают формы, достигшие в процессе эволюции относительно низких степеней морфофизиологического прогресса.

Живое вещество по массе составляет 0,01—0,02% от косного вещества биосферы, однако играет ведущую роль в биогеохимических процессах благодаря совершающемуся в живых организмах обмену веществ. Так как субстраты и энергию, используемые в обмене веществ, организмы черпают из окружающей среды, они преобразуют ее уже тем, что в процессе своего существования используют ее компоненты.

Ежегодная продукция живого вещества в биосфере составляет 232,5 млрд. т сухого органического вещества. За это же время в масштабе планеты в процессе фотосинтеза синтезируется 46 млрд. тонн органических углеродсодержащих веществ. Для этого требуется, чтобы 170 • 109 т С02 прореагировало с 68 • 109 т Н20.

Таким образом, в результате фотосинтеза ежегодно образуется 115х х 109 т сухого органического вещества и 123 • 109 т 02. В течение года в процесс фотосинтеза вовлекаются также 6 • 109 т азота, 2 • 109 т фосфора и другие элементы, например калий, кальций, сера, железо. Приведенные цифры показывают, что живое вещество является наиболее активным компонентом биосферы. Оно производит гигантскую геохимическую работу, способствуя преобразованию других оболочек Земли в геологическом масштабе времени.

Биотический круговорот. Главная функция биосферы заключается в обеспечении круговоротов химических элементов. Глобальный биотический круговорот осуществляется при участии всех населяющих планету организмов. Он заключается в циркуляции веществ между почвой, атмосферой, гидросферой и живыми организмами. Благодаря биотическому круговороту возможно длительное существование и развитие жизни при ограниченном запасе доступных химических элементов. Используя неорганические вещества, зеленые растения за счет энергии Солнца создают органическое вещество, которое другими живыми существами (гетеротрофами — потребителями и деструкторами) разрушается, с тем чтобы продукты этого разрушения могли быть использованы растениями для новых органических синтезов.

Важная роль в глобальном круговороте веществ принадлежит циркуляции воды между океаном, атмосферой и верхними слоями литосферы. Вода испаряется и воздушными течениями переносится на многие километры. Выпадая на поверхность суши в виде осадков, она способствует разрушению горных пород, делая их доступными для растений и микроорганизмов, размывает верхний почвенный слой и уходит вместе с растворенными в ней химическими соединениями и взвешенными органическими частицами в океаны и моря. Подсчитано, что с поверхности Земли за 1 мин испаряется около 1 млрд. т Н20 (на образование 1 г водяного пара необходимо 2,248 кДж). Энергия, затрачиваемая на испарение воды, возвращается в атмосферу (рис. 24.2). Циркуляция воды между Мировым океаном и сушей представляет собой важнейшее звено в поддержании жизни на Земле и основное условие взаимодействия растений и животных с неживой природой.

 

 

Рис. 24.2. Круговорот воды в биосфере

 

Под влиянием этого процесса происходит постепенное разрушение литосферы, перенос ее компонентов в глубины морей и океанов.

На создание органического вещества расходуется всего 0,1—0,2% солнечной энергии, достигающей поверхности планеты. Благодаря этой энергии осуществляется значительный объем работы по перемещению химических элементов.

В качестве примеров биотического круговорота рассмотрим круговороты углерода и азота в биосфере (рис. 24.3; 24.4). Круговорот углерода начинается с фиксации атмосферного диоксида углерода в процессе фотосинтеза. Часть образовавшихся при фотосинтезе углеводов используют сами растения для получения энергии, часть потребляется животными. Углекислый газ выделяется в процессе дыхания растений и животных. Мертвые растения и животные разлагаются, углерод их тканей окисляется и возвращается в атмосферу. Аналогичный процесс происходит и в океане.

Круговорот азота также охватывает все области биосферы (рис. 24.4). Хотя его запасы в атмосфере практически неисчерпаемы, высшие растения могут использовать азот только после соединения его с водородом или кислородом. Исключительно важную роль в этом процессе играют азотфиксирующие бактерии. При распаде белков этих микроорганизмов азот снова возвращается в атмосферу.

Показателем масштаба биотического круговорота служат темпы оборота углекислого газа, кислорода и воды. Весь кислород атмосферы проходит через организмы примерно за 2 тыс. лет, углекислый газ — за 300 лет, а вода полностью разлагается и восстанавливается в биотическом круговороте за 2 млн. лет (рис. 24.5).

 

Рис. 24.3. Круговорот углерода в биосфере

 

Рис. 24.4. Круговорот азота в биосфере

 

Благодаря биотическому круговороту биосфере присущи определенные геохимические функции: газовая — биогенная миграция газов в результате фотосинтеза и азотфиксации; концентрационная — аккумуляция в своих телах живыми организмами химических элементов, рассеянных во внешней среде; окислительно-восстановительная — превращение веществ, содержащих атомы с переменной валентностью (например, Fе, Mn); биохимическая — процессы протекающие в живых организмах.

Стабильность биосферы. Биосфера представляет собой сложную экологическую систему, работающую в стационарном режиме. Стабильность биосферы обусловлена тем, что результаты активности трех групп организмов, выполняющих разные функции в биотическом круговороте,— продуцентов (автотрофы), потребителей (гетеротрофы) и деструкторов (минерализующие органические остатки) — взаимоуравновешиваются. То, что в биосфере поддерживается постоянство ее главных характеристик (гомеостаз), не исключает способности ее к эволюции.

 

 

Рис. 24.5. Темпы циркуляции веществ в биосфере

ЭВОЛЮЦИЯ БИОСФЕРЫ

 

Эволюция биосферы на Протяжении большей части ее истории осуществлялась под влиянием двух главных факторов: естественных геологических и климатических изменений на планете и изменений видового состава и количества живых существ в процессе биологической эволюции. На современном этапе в третичном периоде к ним присоединился третий фактор — развивающееся человеческое общество.

Этапы возникновения жизни, пути и механизмы ее эволюционного развития рассмотрены выше (см. гл. 1). Жизнь зародилась на Земле свыше 3,5 млрд. лет назад. Первыми живыми существами были анаэробы, которые получали энергию путем брожения. Так как брожение представляет собой относительно малопродуктивный способ энергообеспечения, примитивная жизнь не могла эволюционировать далее одноклеточной формы организации. Питание таких примитивных организмов зависело от опускавшихся на дно водоемов органических веществ, синтезируемых в поверхностных слоях воды абиогенным способом.

Недостаток органических веществ создал давление отбора, приведшее к возникновению фотосинтеза. Прогрессивное увеличение кислорода в воде за счет жизнедеятельности фотосинтезирующих организмов и его диффузии в атмосферу вызвало изменения в химическом составе оболочек Земли, прежде всего атмосферы, что в свою очередь сделало возможным и развитие более сложно организованных живых форм и быстрое распространение Жизни по планете. По мере увеличения содержания кислорода в атмосфере формируется достаточно мощный слой озона, защищающий поверхность Земли от проникновения жесткого ультрафиолетового излучения. В таких условиях жизнь смогла продвинуться к поверхности моря. Развитие механизма аэробного дыхания сделало возможным появление многоклеточных организмов. Примечательно, что первые такие организмы появились после того, как концентрация кислорода в атмосфере планеты достигла примерно 3%, что произошло около 600 млн. лет назад (начало кембрия).

Благодаря способности фотосинтезирующих морских организмов продуцировать такое количество кислорода, которое превышало потребности в нем обитателей планеты, стало возможным возникновение в процессе эволюции организмов более высокого уровня структурно-физиологической организации, их широкое расселение и проникновение Жизни в различные сферы обитания. В течение палеозойской эры живые существа не только заселили все моря, но и вышли на сушу. Развитие зеленых растений обеспечило образование больших количеств кислорода и органических веществ, что создавало благоприятные условия для последующей прогрессивной эволюции.

В середине палеозоя темпы потребления кислорода живыми организмами и расход его в абиотических процессах, а также темпы его образования сравнялись. Содержание кислорода в атмосфере начиная с этого периода истории Земли стабилизировалось на уровне примерно 20%.

С появлением человеческого общества в развитии биосферы намечается переход от биогенеза, обусловленного факторами биологической эволюции, к ноогенезу — развитию под влиянием разумной созидательной деятельности человечества.

ГЛАВА 25

УЧЕНИЕ О НООСФЕРЕ






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных