Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Диалектика у истоков жизни




 

 

Генетика – молодая наука. Она ровесница нашего века и настоящее его дитя. Без современных приборов и методов исследования генетика не могла быть рождена. Но и без нее немыслима полноценная деятельность человека XX века во многих сферах познания и производства: в биологии, медицине, сельском хозяйстве и даже в освоении космоса.

Генетика – наука о наследственности и изменчивости. Единство этих противоположных начал каждый может видеть всюду, где потомки приходят на смену предкам.

Наследственность – это свойство всего живого на Земле походить на своих предков. А изменчивостью биологи называют те отличия и уклонения от фамильного сходства, которые можно найти в любой семье.

Каждый из нас похож на папу или маму – тут действует наследственность. Но похожесть эта не полная. Всегда дети чем-то отличаются от родителей: и внешне и психически. Это и есть изменчивость.

Изменчивость и наследственность – два изначальных свойства жизни, без которых невозможны эволюция и развитие животного и растительного мира. Одно начало консервативное, другое революционное. В их борьбе и единстве находит свое выражение диалектика природы.

Чем больше разнообразных образцов жизни, тем шире поле деятельности у естественного отбора, тем успешнее идет эволюция, тем большего совершенства достигает природа. Изменчивость доставляет материал для эволюции. Наследственность закрепляет ее результаты. Изменчивость создает новые типы живых существ, а наследственность сохраняет их.

 

 

Генетики различают три основных вида изменчивости. Изменения, вызванные непосредственной средой обитания или тренировкой. Это так называемые благоприобретенные признаки, или модификации. Они всегда соответствуют требованиям среды, адекватны ей. Затем мутации, или скачкообразные, внезапные и часто неадекватные влиянию среды изменения, и комбинации – это изменения, вызванные новым, не таким, как у старшего поколения, распределением наследственных задатков, полученных от родителей.

Наследственность сохраняет не все из этих трех типов изменчивости. Благоприобретенные признаки не наследуются. Мутации наследуются всегда, так как представляют собой изменения самого наследственного вещества, или, как говорят, генотипа.

Фенотипом называют совокупность всех свойств и признаков организма, но только не его наследственный шифр, который есть генотип.

Неверно, хотя часто так и думают, что вещества, несущие наследственную информацию, руководят синтезом белков и развитием органов только при зарождении организма. Нет, жизнь и наследственность идут рука об руку от рождения и до смерти. Ведь генетический шифр содержится не только в ядрах половых клеток, но и в каждой клеточке тела.

В человеке 60 триллионов клеток. Каждые сутки большая часть из них умирает. Но прежде чем погибнуть, старые клетки производят на свет молодых своих заместителей. И производят их по тому плану, который запрограммирован в наследственности, скрытой в их ядрах.

А что будет, если в наследственном механизме какой-либо клетки нашего тела по той или иной причине откажет какая-то деталь? Случится какая-то неполадка?

Новые клетки, рожденные ею, станут мутантами – не такими, какими были, в них не все, как надо. Дефективные клетки перестанут соответствовать своему назначению, и в пораженной ткани разрастется… раковая опухоль, которая в конце концов погубит организм.

Без изменчивости и наследственности жизнь не достигла бы того совершенства и разнообразия, которое мы сейчас наблюдаем. Без изменчивости не было бы у организмов удивительной способности приспосабливаться к разным условиям. Не было бы у жизни большого выбора путей развития. А без наследственности утрачивались бы новые приобретения.

 

 

И белок, без которого нет жизни, и носители наследственности – нуклеиновые кислоты ДНК и РНК, – по-видимому, образовались на Земле в одно время. Некоторые ученые полагают даже, что вещество, способное нести наследственную информацию, – рибонуклеиновая кислота – появилось раньше белка и, уж во всяком случае, ненамного позже. Старый мучительный вопрос, что же произошло раньше: яйцо или курица, пока еще окончательно не решен.

Итак, с первых своих шагов жизнь обрела одно из основных свойств – наследственность.

 

Митоз и мейоз

 

Давно уже известны два типа деления клеток: деление митотическое и редукционное. Первое называют также митозом, а второе – мейозом. Первым способом, митозом, делятся все клетки, вторым – только половые.

Сначала – о митозе. Ему предшествует удвоение молекул, несущих наследственную информацию.

Молекулы ДНК, в которых заключен генетический шифр, располагаются в ядре клетки, в особых длинных нитях – хромосомах. У каждого вида животных и растений строго определенное число хромосом. Обычно их несколько десятков. У человека, например, 46[27]. А у одного из червей всего две. У некоторых раков по 200 хромосом. Но рекорд побили микроскопические радиолярии: у одной из них 1600 хромосом!

Когда молекулы ДНК удваиваются, удваиваются и хромосомы. Каждая строит по своему подобию двойника. Значит, какое-то время в наших клетках хромосом бывает вдвое больше, чем обычно.

Между двумя делениями, в так называемой интерфазе, хромосомы в обычный микроскоп не видны. Как будто их нет совсем. В электронный же видно, что они все-таки тут, никуда не делись, но так тонки, что без очень сильного увеличения не заметны. Говорят, что на этой фазе своей деятельности хромосомы имеют вид «ламповых щеток». И в самом деле, они немного похожи на ерши, которыми когда-то прочищали стекла керосиновых ламп.

За десять-двадцать часов относительного покоя между двумя делениями хромосомы должны успеть синтезировать своих двойников с полной копией всех содержащихся в них генов, всех молекул ДНК.

Как только двойники будут готовы, длинные хромосомные нити (и оригиналы и их копии) начинают сворачиваться в тугие спирали. А те скручиваются в спирали второго порядка. Смысл этого скручивания вполне понятен. До сих пор хромосомы лежали спутанным клубком и растянуть их по разным полюсам клетки, наверное, было бы не легко. Теперь же каждая хромосома – спираль, скрученная спиралью, – очень компактный и удобный для транспортирования «багаж».

Все ДНК человеческой клетки, вытянутые в одну нить, занимают в длину приблизительно около метра. А свернутая дважды спиралью эта нить умещается в 46 хромосомах, длина каждой из которых всего несколько микрон.

Итак, перед делением хромосомы сами себя упаковывают в компактные «вьюки». К этому моменту, который в клеточном делении именуется профазой, оболочка ядра растворяется, а уже известные нам центриоли, или центросомы, расходятся к противоположным полюсам клетки. Нити так называемого митотического аппарата, или веретена, соединяют между собой эти полюса и каждую хромосому с одним из полюсов.

Затем хромосомы выстраиваются парами (оригинал бок о бок со своей копией) вдоль экватора клетки, как танцоры на балу. Эту стадию деления называют метафазой.

Потом каждая из парных хромосом устремляется к своему полюсу. Партнеры расстаются навсегда, потому что скоро перегородка разделит по экватору старую клетку на две новые. Впечатление такое, будто центриоли тянут к себе хромосомы за ниточки, как марионеток.

И действительно, хромосомы имеют вид, какой бывает у всякого гибкого тела, когда его за ниточку протягивают через жидкость.

Место, за которое ее тянут, у каждой хромосомы всегда одно и то же. Его называют кинетохором или центромерой. От того, где у хромосомы кинетохор, часто зависит и ее форма. Если кинетохор посередине, то хромосома, когда во время митоза ее тащат за нитку, перегибается пополам и становится похожа на латинскую цифру «пять» (V). Если кинетохор у самого конца хромосомы, то она изгибается на манер латинской буквы «йот» (J).

 

 

Одно время думали, что нити митотического аппарата – своего рода рельсы, по которым хромосомы катятся к полюсам. Потом решили, что они скорее похожи на тонкие резинки, миниатюрные мускулы, которые, сокращаясь, подтягивают к полюсам свой хромосомный груз. Но тогда, сокращаясь, нити становились бы толще. И «худели» бы, удлиняясь. Однако этого не происходит. Укорачиваясь и удлиняясь, они не становятся ни толще, ни тоньше.

По-видимому, механика клеточного веретена иная. Возможно, думают некоторые ученые, нити укорачиваются оттого, что часть составляющих их молекул выходит из игры: то есть из нитей. А добавление молекул в одном линейном направлении приводит к удлинению нитей.

Тем или иным способом хромосомы со скоростью около одного микрона в минуту перетягиваются из центра клетки к ее полюсам. С этого момента митоз переходит в стадию, называемую анафазой.

За анафазой следует телофаза. Спирали хромосом раскручиваются. Снова «ламповые щетки» входят в игру. Клубки нитевидных хромосом обрастают ядерными оболочками: в клетке теперь два ядра-близнеца. Кольцевая перетяжка скоро разделит ее пополам. Каждой половине достанется свое ядро.

Заканчивается клеточное деление удвоением центриолей. Их было четыре – по две на каждом полюсе. Клетка разделилась, и в каждой новорожденной ее половине оказалось лишь по две центриоли.

На экране электронного микроскопа центриоли похожи на полые цилиндрики, сложенные из трубочек. Центриоли всегда лежат под прямым углом друг к другу. Поэтому одну из них мы видим всегда в поперечном, а другую в продольном разрезе.

В телофазе от каждой из центриолей отпочковывается маленькая центриолька – плотное цилиндрическое тельце. Оно быстро растет, и вот уже в клетке снова четыре центриоли.

Путем митоза из одной получаются две клетки, совершенно идентичные по наследственности, скрытой в их хромосомах (если ни одна из них не подверглась мутации).

Обычно митоз длится час или два часа. В нервных тканях митозы случаются очень редко. Зато в костном мозгу, где каждую секунду рождается на свет 10 миллионов эритроцитов, каждую секунду происходит 10 миллионов митозов!

Теперь, прежде чем рассказать о втором типе клеточного деления – о мейозе, мы должны ввести несколько новых терминов.

Набор хромосом, заключенный в ядре нормальной соматической (иными словами, не половой, а обычной) клетки тела, генетики называют двойным – диплоидным. У человека диплоидный набор хромосом равен 46. Все эти 46 хромосом по внешности и величине легко разделяются на идентичные по конфигурации пары (лишь партнеры одной пары – половые хромосомы «х» и «у» – не похожи друг на друга. Но об этом позже).

Набор хромосом, в котором из каждой пары присутствует только один партнер, называют гаплоидным, или ординарным. Все половые клетки, или гаметы, содержат гаплоидный набор хромосом. (Это значит, что в спермиях и в яйцеклетках человека только по двадцать три хромосомы.) Иначе при оплодотворении яйца, когда сливаются материнская и отцовская гаметы, получалась бы зигота с числом хромосом вдвое больше нормального.

Мейоз, предшествующий образованию спермиев и яйцеклеток, призван наделить гаметы вдвое меньшим, гаплоидным, числом хромосом. А когда гаметы сольются, в зиготе будет уже нормальное диплоидное число хромосом. Половина от матери, половина от отца.

 

 

Понятно теперь, почему все хромосомы в зиготе парные?

Ведь каждой материнской хромосоме соответствует точно такая же по форме, величине и характеру наследственной информации отцовская хромосома. Парные хромосомы называют гомологичными.

Мейоз начинается с того, что однотипные по конфигурации хромосомы объединяются в пары, конъюгируют. Затем каждая из хромосом каждой пары создает из веществ, растворенных в протоплазме, своего двойника. Как и в митозе.

Теперь однотипных хромосом уже не две, а четыре. Четверками, или тетрадами, плотно прижавшись друг к другу, выстраиваются они вдоль экватора клетки. Нити веретена разъединяют четверки снова на пары, растаскивая их к разным полюсам.

Клетка делится пополам, а потом еще, но теперь в другой плоскости, перпендикулярной к первой. На этот раз хромосомы не удваиваются. Выстроившиеся по экватору пары расходятся поодиночке в разные концы клетки.

У каждого полюса их теперь вдвое меньше, чем при митозе или в первой фазе мейоза. Поэтому, когда клетка разрывается пополам, рожденные из нее две новые гаметы получают гаплоидное число хромосом. Так как в первой фазе мейоза из одной клетки рождаются две диплоидные клетки, то в конце второй его фазы мы имеем четыре гаметы. И в каждой, повторяю, гаплоидное число хромосом. Если это гаметы человеческие, значит в них будет по двадцать три хромосомы. А когда при оплодотворении они сольются в одну зиготу, хромосом снова в ней станет сорок шесть.

Зигота дает начало человеческому зародышу, все клетки в котором будут с 46 хромосомами.

Механикой клеточного деления в мейозе – расхождением по разным гаметам парных хромосом, каждая из которых ведет свой род либо от отца, либо от матери, – объясняются многие законы наследственности и изменчивости, открытые Грегором Менделем и другими генетиками.

Польские ученые недавно методом цейтраферной съемки сделали отличный фильм о митозе. Все фазы митоза на экране ускорены в несколько сот раз. В действительности же движения хромосом во время деления происходят значительно медленнее. Я видел этот фильм, и он поразил меня сильнее, чем лучшие из лучших художественных фильмов.

В нем необычные актеры – хромосомы. Они сходятся и расходятся, выстраиваются в ряд и разбегаются в разные стороны, словно танцоры на балу, исполняющие сложные па старинного танца. Американский биолог Мёллер, основатель радиационной генетики, назвал танцем хромосом их странные перемещения во время деления клетки.

Каждую секунду в нашем теле совершаются миллионы митозов! И сотни миллионов неодушевленных, но очень дисциплинированных маленьких балерин исполняют древнейший на земле танец. Танец жизни. В таких танцах клетки тела пополняют свои ряды. И мы растем и существуем.

На согласованном расхождении хромосом к разным полюсам клетки основаны все явления наследственности и жизни. Ведь каждая хромосома – сложное соединение гигантских нуклеиновых кислот и белков. А нуклеиновые кислоты несут в себе великое множество наследственных единиц – генов, то есть суть всего сущего на Земле.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных