Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Осветительные оптические системы




Типы осветительных систем

Коллектор

Если предмет, который необходимо осветить, находится в бесконечности, то используют оптическую схему коллектора. В коллекторе источник света располагается в переднем фокусе оптической системы, а его изображение локализуется в бесконечности (рис. 7.1).


Рис. 7.1. Схема коллектора.

Конденсор

Если освещаемый предмет находится на конечном расстоянии, то для его освещения используют конденсор. Возможны два варианта оптической схемы конденсора.

В первой схеме оптическая система проецирует источник света непосредственно на освещаемый предмет (рис. 7.2). Такую схему применяют, если яркость источника света равномерна и нет опасений, связанных с нагревом предмета (например, диапозитива). В этом случае каждой освещаемой точке предмета будет соответствовать сопряженная с ней точка источника.


Рис. 7.2. Схема конденсора
(источник проецируется на освещаемый предмет).

Во второй схеме оптическая система проецирует источник света во входной зрачок последующей оптической системы. Освещаемый предмет располагается в ходе лучей, обычно вблизи конденсора (рис. 7.3). Эту схему применяют при неравномерной яркости источника. В этом случае каждая точка предмета освещается лучами, исходящими из всех точек источника.


Рис. 7.3. Схема конденсора
(источник проецируется во входной зрачок последующей оптической системы).

 

Осветительные оптические системы

Осветительные оптические системы позволяют улучшить качество освещения, задействовать большую часть светового потока источника и обеспечить более равномерное освещение объекта. Основными элементами осветительных систем являются простые линзы или зеркала (сферические или асферические), а также линзы или зеркала со сложным профилем (линзы Френеля). В качестве элементов осветительных систем могут использоваться растровые системы, световоды и оптическое волокно.

Линзовые осветительные системы содержат только линзы сферической или асферической формы. Степень сложности (число линз) конденсора определяется углом охвата , то есть двойным апертурным углом в пространстве предметов. Чем больше угол охвата, тем сложнее схема конденсора. Максимальный угол охвата для линзовых конденсоров 90°. Простейшая схема конденсора – одиночная линза с углом охвата не более 15 – 20°.

Зеркальные осветительные системы содержат только зеркальные элементы. Зеркальные осветительные системы отличаются от линзовых большим углом охвата (до 140°) и отсутствием хроматических аберраций. Кроме того, у зеркальных систем меньше масса, чем у линзовых, и больше коэффициент пропускания. Простейшая зеркальная система – вогнутое сферическое зеркало с предельным углом охвата до 110°. Источник света в такой системе помещается в фокус зеркала, и тогда его изображение получается на бесконечности.

Чтобы избежать повреждений или загрязнений отражающего слоя, в осветительных системах часто применяют стеклянные отражатели, внутреннюю поверхность которых покрывают отражающим слоем. Например, зеркало Манжена состоит из двух сферических поверхностей, одна из которых покрыта отражающим слоем (рис. 7.4). Такое зеркало имеет угол охвата около 140°.


Рис. 7.4. Зеркало Манжена.

Зеркально-линзовые осветительные системы содержат зеркальные и линзовые компоненты. Например, линзовая часть системы может располагаться после зеркального компонента. В качестве зеркального компонента могут применяться сферические или асферические зеркала, а в качестве линзовых компонентов – сферические и асферические линзы, или линзы Френеля (рис. 7.5).


Рис. 7.5. Зеркально-линзовая осветительная система.

Линзы Френеля – оптические детали со ступенчатой поверхностью сложного профиля (рис. 7.6). Ступеньки линзы Френеля обычно разграничены концентрическими канавками и представляют собой участки сферических или конических поверхностей. Каждый участок этих поверхностей направляет пучки лучей в требуемое место изображения. Чем меньше расстояние между соседними ступеньками (то есть больше их число), тем лучше исправляются в линзе аберрации.


Рис. 7.6. Линза Френеля.

Линзы Френеля отличаются большими углами охвата (до 100 – 120°) и небольшими аберрациями. Кроме того, они имеют малые габариты (толщины линз) и вес, благодаря чему линзы Френеля используются в некоторых светофорах, в фарах машин. Осветительные системы в простых проекторах часто состоят из одной линзы Френеля (если присмотреться, то можно заметить на экране проектора концентрические окружности).

 

Прожектор

Прожектор – это оптическая система, концентрирующая световой поток источника света в узкий пучок для освещения удаленных объектов или для передачи сигналов на большие расстояния (рис. 7.7).

Оптическая система прожектора используется в маяках, театральных прожекторах, в фарах автомобилей и т.д.


Рис. 7.7. Схема прожектора.

Рассмотрим основные характеристики прожектора.

Сила света прожектора (поток излучения на единицу телесного угла) определяется выражением:

,
(7.1)

где – коэффициент пропускания оптической системы, – диаметр выходного зрачка, – яркость источника (поток, излучаемый единицей площади на единицу телесного угла).

Из выражения (7.1) видно, что при одной и той же яркости источника сила света растет пропорционально площади выходного зрачка. Выражение (7.1) справедливо при удалении освещаемого предмета на расстояние, большее, чем дистанция оформления пучка (рис. 7.7). Только начиная с этого расстояния в изображении участвуют все лучи, идущие через край выходного зрачка прожектора.

Коэффициент усиления прожектора – это отношение силы света прожектора к силе света источника:

,
(7.1)

где – диаметр источника.

Коэффициент усиления прожектора может достигать .

Угол рассеяния прожектора зависит от размеров светового тела источника излучения:

.
(7.1)

Из этого выражения следует, что чем больше фокусное расстояние, тем меньше угол рассеяния.

Угол охвата – двойной апертурный угол в пространстве предметов, характеризующий полноту использования светового потока.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных