Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Приливные силы в небесной механике




В небесной механике основной силой, вызывающей движение небесных тел, является сила Всемирного тяготения пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними. Поэтому при сохранении подобия модели взаимодействующих тел, сила тяготения растёт пропорционально четвёртой степени абсолютных размеров тел, а гравитационные силы в масштабах Вселенной играют определяющую роль, практически не заметную при взаимодействии тел в земных масштабах.

Типичным для небесной механики случаем является случай гравитационного взаимодействия двух неравных по массе небесных тел. Например звезды и планеты или же планеты и её спутника. В таком случае более крупное небесное тело рассматривается как центр гравитации, и объектом рассмотрения является движение малого тела вокруг центра гравитации, расположенного, нередко, в пределах более крупного тела. В этом случае наиболее часто наблюдаемым объектом рассмотрения является малое тело, например — Земля в совместно созданном гравитационном поле системы Земля-Солнце.

По мере увеличения размера небесного тела в сохранении его формы всё большую роль приобретают силы собственного тяготения, которые, складываясь геометрически с силой, направленной к центру взаимной гравитации, приводят к тому, что суммарная сила, действующая на каждый элемент массы, оказывается пропорциональной расстоянию от центра гравитации. Это и обеспечивает линейное нарастание испытываемого точками тела ускорения по мере увеличения их расстояния от центра вращения, следовательно сохранение одинаковости их угловой скорости вращения, что является синонимом обращения тела, как целого.

Приведённое выше рассмотрение динамики движения тел в механике применимо и к динамике тел небесных с тем уточнением, что силы, действующие на небесные тела (в отличие от спортивного молота или колеса машины Формулы 1) оказываются переменными в пределах размеров этих тел и убывают в направлении увеличения расстояния от центра гравитации. Следовательно, для наиболее удалённых от центра небесного тела его частей возникает дефицит силы притяжения к центру гравитации не только за счёт того, что для обеспечения вращения тела, как единого целого, требуется увеличение центростремительной силы, но и потому, что действующая по направлению к центру обращения сила притяжения к центру гравитации становится ощутимо меньше.

И, наоборот, для наиболее близкой к центру притяжения области тела наблюдается избыток этой силы, усугубляемый увеличением силы притяжения к центру обращения по закону квадратов расстояния. Так возникает градиент действующих на противоположные части небесного тела сил. Этот градиент компенсируется до определённого предела, задаваемого напряжённостью поля самогравитации.

Существенно отметить, что эта суммарная сила, независимо от того, к какой точке тела она приложена, направлена только в одну сторону, а именно — к центру гравитации. И потому траектория Луны, являющейся не только спутником Земли, но и членом Солнечной системы, и потому также обращающейся совместно с Землёй вокруг Солнца, на любом своём участке выгнута в сторону от Солнца. Из-за обращения Луны вокруг общего с Землёй центра меняется лишь радиус кривизны этой траектории в разных её точках.

Но при достаточно малых удалениях небесного тела от общего для взаимодействующих тел центра гравитации возникающие напряжения могут превысить предел прочности материала и действие самогравитации и привести к его разрушению. Такое минимальное расстояние носит название предела Роша, что исторически не совсем верно, т. к. Рош исследовал случай тел с нулевой прочностью. Роль прочности и собственной кинематики возмущаемого тела исследовал в 1947 г. Г. Джеффрис, предложивший уточнённые расчётные формулы.[2] Действием приливных сил объясняется возникновение колец у Сатурна и других высоких планет. В астрономии считается, что эти кольца образовались из спутников, приблизившихся на расстояние, меньшее «предела Роша» и разорванных приливными силами.[3] Для космогонии особенно важно, что внутри сферы с радиусом, меньшим предела Роша, вообще невозможна гравитационная конденсация вещества с образованием единого тела (спутника).






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных