Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Методика и техника эксперимента. Удельным зарядом электрона называют отношение электрического заряда частицы к ее массе e/m




Удельным зарядом электрона называют отношение электрического заряда частицы к ее массе e/m. Существуют различные методы определения удельного заряда электрона, в основе которых лежат результаты исследования движения электрона в электрическом и магнитном полях. В данной работе используется метод магнетрона. Называется он так потому, что конфигурация полей в нем напоминает конфигурацию в магнетронах – генераторах электромагнитных колебаний сверхвысоких частот. В данном методе магнетрон – это электронная вакуумная лампа, в которой катод и анод образуют коаксиальную систему, помещенную в продольное однородное магнитное поле, создаваемое соленоидом, соосным электронной лампе. Принципиальная схема установки приведена на рис. 5.9.

 
 
К


Вылетающие из катода электроны движутся в скрещенных электрическом и магнитном полях (напряженность Е направлена по радиусу от анода к катоду, индукция В – вдоль оси цилиндрической системы).

Электроны, вылетающие из катода лампы при отсутствии тока в соленоиде, движутся радиально к аноду. При включении тока в соленоиде создается магнитное поле, параллельное оси лампы и на электроны начинает действовать сила Лоренца. Под действием этой силы траектория электронов искривляется. Пути электронов изображены на рис. 5.10.

Для каждого данного напряжения между катодом и анодом существует некоторое критическое значение магнитной индукции В к, при котором траектории электронов касаются поверхности анода. Если В < В к, то все электроны доходят до анода и ток через магнетрон имеет то же значение, что и без магнитного поля. Если же В > В к, то ни один электрон не достигает анода и ток через лампу равен нулю. Зависимость величины анодного тока от величины индукции магнитного поля имеет вид изображенный на рис. 5.11.

Однако при В = В к вместо резкого отрыва тока (пунктирная линия) наблюдается размытый спад кривой. Это объясняется различного рода несовершенствами устройства магнетронов и условий опыта, например, не идеальная коаксиальность катода и анода, краевые эффекты, наличие остаточного газа в лампе, падение напряжения вдоль катода и др. Все же перелом кривой остается достаточно резким и может быть использован для определения удельного заряда электрона. Величина индукции магнитного поля соленоида определяется по формуле:

В к = , (5.12)

где µ 0 = 4π·10-7Гн/м – магнитная постоянная; L – длина соленоида; D – диаметр соленоида; N – число витков соленоида.

Удельный заряд электрона связан с критическим значением магнитной индукции соотношением:

, (5.13)

где Uа – анодное напряжение, rа – радиус анода.

Порядок выполнения работы

1. Включить установку, дать ей прогреться в течение 5 минут.

2. Заполнить таблицу с данными о приборах, используемых в работе.

3. Установить анодное напряжение Uа = 50 В.

4. Изменять значения тока в соленоиде i Cв пределах от 2,2 А до 0,4 А с интервалом 0,2 А и с помощью миллиамперметра определять соответствующие значения анодного тока ia (цена деления шкалы миллиамперметра 0,1 mА). Результаты измерений записать в таблицу 5.2.

5. Установить анодное напряжение Ua = 40 В.

6. Повторить пункт 3, изменяя значения тока в соленоиде i C в пределах от 2,2 А до 0,6 А с тем же интервалом. Результаты измерений также записать в таблицу 5.2.

7. Повторить пункт 3 для анодного напряжения Ua =30 В, изменяя i c в пределах от 2,2 А до 0,8 А. Соответствующие результаты записать в таблицу 5.2.

8. Используя полученные результаты, построить три графика зависимости анодного тока ia от тока в соленоиде i C.

9. Найти на графике (рис. 5.12) точку перегиба (А) и провести к ней касательную до пересечения с осью токов i C. Отрезок 0i к соответствует величине критического тока i к.

10. По формуле (5.12) вычислить величину В к для каждого значения критического тока в соленоиде (L = 0,168 м, D = 0,085 м, ra = 10-3 м, N = 2700).

11. Определить величину удельного заряда электрона (е/m) по формуле (5.13) для всех значений В к. Результаты записать в таблицу 5.3.

 

12. Определить среднее значение (е/m)ср.

13. Вычислить табличное значение удельного заряда.

14. Сравнить экспериментально полученное и табличное значения.

15. Сделать вывод о проделанной работе.

Т а б л и ц а 5.2

Ua = 50 В Ua = 40 В Ua = 30 В
i с, А ia, А I с, А ia, А I с ia
           

Т а б л и ц а 5.3

Ua, В i к, А В к , Тл е/m, Кл/кг
       

Контрольные вопросы

1. Что такое удельный заряд частицы?

2. Какая сила действует со стороны магнитного поля на движущуюся заряженную частицу? Как она направлена?

3. Как движется заряженная частица в магнитном поле? Рассмотреть случаи:

а) частица влетает вдоль линий поля, б) частица влетает перпендикулярно линиям поля, в) частица влетает под произвольным углом к линиям поля.

4. Опишите метод, применяемый в данной работе. Какие еще существуют методы определения удельного заряда?

5. Как работают ускорители заряженных частиц?

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных