Главная | Случайная
Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Животное электричество




После первых же случаев поражения электрическим разрядом возникли, обоснованные предположения и надежды, что новое вещество окажется способным облегчать или вылечивать болезни страждущего человечества. Открытие лейденской банки подтвердило предположения и еще больше подкрепило надежду. А когда Франклину наконец удалось извлечь электричество из облаков, стало казаться, «что вся природа стала электрической». А если вся природа электрическая, то и жизнь человека, как физическая, так и духовная, должна определяться течением по жилам и по мускулам этого таинственного вещества. Таким образом возникло представление о животном электричестве, главном регуляторе жизни животных вообще и людей в частности.

В 1773 году появился мемуар Джона Уолша, в котором доказывается электрическая природа рыбы, называемой с тех пор электрическим скатом. Вильгельм Гравезанд и Мушенбрук также выдвигали предположение о его электрической природе, но не подтвердили его никакими опытами. Некоторые опыты в этом направлении проделал Байен (1745-1798), но они прошли незамеченными. Таким образом, мемуар Уолша воспринимался как открытие и произвел сильное впечатление. В нем экспериментально показано, что явление удара от электрического ската можно воспроизвести с помощью искусственного электричества.

За мемуаром Уолша последовало много других работ, посвященных физическому и анатомическому исследованию электрического ската; среди них выделяется мемуар Кавендиша (1776 г.), в котором помимо некоторых данных по интересовавшему его вопросу об измерении электрического сопротивления описан «искусственный электрический скат», где электричество поставляется батареей лейденских банок. Это приспособление было погружено в подсоленную воду той же степени солености, что и море. При этом наблюдались те же эффекты, что и при действии ската.

В период максимального обилия публикаций, последовавшего за работой Уолша, физики разделились на два лагеря: одни считали животное электричество свойственным лишь «электрическим рыбам», другие же приписывали его вообще всем животным. Физиологи того времени в свою очередь придумали себе без всяких экспериментальных оснований «животные эссенции», подобные электрическому флюиду, но в остальном не определенные. Эссенции, протекая по нервам, ответственны за перенос ощущений к мозгу и произвольное сокращение мышц в результате волевых импульсов.

На фоне этого океана необоснованных гипотез, путаных идей, ошибочных аналогий, смутных предчувствий начались исследования Луиджи Гальвани, родившегося в Болонье 9 сентября 1737 году, и умершего там же 4 декабря 1798 года.

Занимаясь физиологией и медициной, он, как и многие его современники, интересовался ролью электричества в процессах, происходящих в живом организме. Проводя исследования в этом направлении, он открыл так называемое гальваническое электричество. Гальвани помещал лягушку на железную пластинку; касаясь медной проволокой, пропущенной через спинной мозг лягушки, этой пластинки, он наблюдал судорожные сокращения мышц.

 

К объяснению открытого явления Гальвани подошел прежде всего как врач. Он считал, что открыл «животное» электричество, вырабатываемое организмом лягушки и являющееся одновременно «нервным флюидом». При замыкании нерва и мускула лягушки проводником образуется замкнутая цепь, «животное» электричество свободно протекает по этой цепи и вызывает сокращение мышцы, играющих роль регистратора.

 

 

Позже, в работе 1795 году, опубликованной в 1797 году и написанной в виде письма Спаланцани, Гальвани изложил более полно теорию животного электричества: это электричество накапливается в неравновесном состоянии в мышечных тканях; через нерв, соприкасающийся с мышцей, оно переходит в металлическую дугу, а через нее вновь возвращается в мышцу. Иными словами, мышцы и нервы, согласно Гальвани, образуют как бы две обкладки лейденской банки.

Открытие Гальвани и его теория «животного» электричества, опубликованная в 1791 года, вызвали большой интерес. Некоторые ученые повторили опыты Гальвани. Среди них был и итальянский физик Алессандро Вольта, который не только подтвердил результаты опытов Гальвани, но и сделал новый шаг в изучении открытого явления.

Вольта, как физика, прежде всего, интересовала физическая сторона явления. На основании ряда исследований он пришел к иному выводу, чем Гальвани. Вольта заметил, что сила сокращения мышц лягушки зависит от того, какие употребляются металлы, и что однородные металлы почти не оказывают действия. Отсюда он заключил, что источником электричества является не организм лягушки: оно возникает в результате соприкосновения разнородных металлов, лягушка же играет роль регистрирующего прибора.

Он выдвинул гипотезу, согласно которой металлические тела обладают свойством действовать на заключенный в них электрический флюид, отталкивая или притягивая его. Поскольку каждый металл обладает определенной силой действия на электрический флюид, то соприкосновение различных металлов приводит его в движение, возникает электрический ток, который и действует на нервы и мышцы лягушки. Высказав эту гипотезу, Вольта предложил изменить название «животное» электричество на «металлическое» электричество.

Вольта, обосновывая гипотезу «металлического электричества», шел по пути исключения из опыта живого организма. Он показал, что простое соприкосновение разнородных металлов приводит к их электризации. Это было открытие контактной разности потенциалов у металлов (данный термин появился позже). Вольта расположил металлы в ряд, причем каждый стоящий справа металл при соприкосновении со стоящим слева электризовался отрицательно. При этом, как он полагал, «способность приводить в движение электрический флюид» для металла, расположенного не рядом, равна сумме «способностей» всех промежуточных пар металлов. Подобные исследования привели Вольта к изобретению первого гальванического элемента, получившего название вольтова столба. Об этом изобретении он сообщил в 1800 году.

20 марта Вольта пишет Джозефу Бэнксу (1743-1820), президенту Королевского общества:

"После долгого молчания, в котором я и не пытаюсь оправдываться, имею удовольствие сообщить Вам, Синьор, а через Ваше посредство и Королевскому обществу о некоторых поразительных результатах, полученных мною... Главный из этих результатов, содержащий в себе почти все остальные, это создание прибора, который по своим действиям, то есть по сотрясению, испытываемому рукой и т. п., сходен с лейденской банкой или, еще лучше, со слабо заряженной электрической батареей, но который, однако, действует непрерывно, то есть его заряд после каждого разряда восстанавливается сам собой; одним словом, этот прибор создает неуничтожаемый заряд, дает непрерывный импульс электрическому флюиду".

Так начинается письмо Вольта, из которого мир узнал об изобретении нового прибора, названного автором «искусственный электрический орган» по аналогии с естественным электрическим органом у электрического ската, но потом переименованный им в «электродвижущий аппарат» или «колонну», что диктовалось его формой. Позже французы стали называть этот прибор «гальваническим столбом» или «вольтовым столбом», исходя из формы первых образцов.

Исследуя соединения различных тел, Вольта пришел к выводу, что контактная разность потенциалов имеет место только между металлами и некоторыми другими «сухими» проводниками; между «сухими» и «влажными» проводниками она не возникает. Первые проводники Вольта назвал проводниками первого класса, вторые – второго класса. Отсюда, предполагает Вольта, следует возможность получения непрерывного электрического тока (если привести два разнородных металла в соприкосновение и соединить их с помощью проводника второго класса).

Вольтов столб состоял из нескольких десятков наложенных друг на друга круглых пластинок из серебра и цинка или меди и олова, между которыми были проложены картонные прокладки, пропитанные соленой водой. Вольта установил, что при замыкании крайних пластинок возникает электрическая искра, а при прикосновении к прибору ощущаются удар и покалывание. В отличие от лейденской банки действие столба непрерывно. Вольта так объяснял действие гальванической батареи. Между каждой парой пластин из цинка и серебра возникает разность потенциалов. Эти пары соединены проводниками второго рода, между которыми в металлами такой разности потенциалов нет, поэтому напряжения от каждой пары металлов суммируются: в результате на концах батареи имеет место значительное напряжение. Это напряжение непрерывно поддерживается, и по замкнутой цепи протекает электрический ток.

 

 

Теория гальванического элемента, созданная Вольта, получила название контактной. В противовес ей возникла другая теория, по которой электрический ток возникает в результате химических процессов, происходящих в гальваническом элементе. Между последователями этих двух теорий некоторое время велась дискуссия, окончившаяся победой химической теории. Причем критики контактной теории опирались, в частности, и на принцип невозможности вечного двигателя, которым являлся бы гальванический элемент, если бы теория Вольта была справедливой.




Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2019 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных