Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Е уравнение Максвелла. Теорема Остроградского-Гаусса применительно к магнитным полям:




Теорема Остроградского-Гаусса применительно к магнитным полям:

,

так как не существует магнитных зарядов.

Величины, входящие в уравнения Максвелла, не являются независимыми и между ними существует следующая связь (изотропные несегнетоэлектрические и неферромагнитные среды):

где и - соответственно электрическая и магнитная постоянные, и - соответственно диэлектрическая и магнитная проницаемости, - удельная проводимость вещества.

Недостаток уравнений Максвелла: уравнения не описывают, откуда и как берутся поля.

Из уравнений Максвелла следует существование электромагнитных волн, которые распространяются в вакууме со скоростью света:

.

Волновое уравнение

Рассмотрим нейтральную (), непроводящую () с изотропную среду:

тогда, учитывая, что , получаем:

,

тогда так как , то и окончательное уравнение:

, или же

- волновое уравнение.

Решение этого уравнения: , где - волновое число, - длина волны, “-” соответствует положительному направлению распространения, “+” соответствует обратному направлению распространения (против оси ).

Геометрическое место точек, за которое доходит волна за одно и то же время, называется волновой поверхностью.

Граница между областью, где есть колебания и нет, называется фронтом волны (по сути, передняя волновая поверхность).

По виду фронта различают сферические, цилиндрические и плоские волны. Причем любой волновой процесс можно представить в виде суперпозиции плоских волн.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных