![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Центрально-растянутые и центрально-сжатые элементы4.1. Расчет центрально-растянутых элементов следует производить по формуле
где N – расчетная продольная сила; R p – расчетное сопротивление древесины растяжению вдоль волокон; F нт – площадь поперечного сечения элемента нетто. При определении F нт ослабления, расположенные на участке длиной до 200 мм, следует принимать совмещенными в одном сечении. 4.2. Расчет центрально-сжатых элементов постоянного цельного сечения следует производить по формулам: а) на прочность
б) на устойчивость
где R с – расчетное сопротивление древесины сжатию вдоль волокон; j – коэффициент продольного изгиба, определяемый согласно п. 4.3; F нт – площадь нетто поперечного сечения элемента; F рас – расчетная площадь поперечного сечения элемента, принимаемая равной: при отсутствии ослаблений или ослаблениях в опасных сечениях, не выходящих на кромки (рис. 1, а), если площадь ослаблений не превышает 25% Е бр, Е расч = F бр, где F бр – площадь сечения брутто; при ослаблениях, не выходящих на кромки, если площадь ослабления превышает 25% F бр, F рас = 4/3 F нт; при симметричных ослаблениях, выходящих на кромки (рис. 1, б), F рас = F нт.
4.3. Коэффициент продольного изгиба j следует определять по формулам (7) и (8); при гибкости элемента l £ 70
при гибкости элемента l > 70
где коэффициент а = 0,8 для древесины и а = 1 для фанеры; коэффициент А = 3000 для древесины и А = 2500 для фанеры. 4.4. Гибкость элементов цельного сечения определяют по формуле
где l о – расчетная длина элемента; r – радиус инерции сечения элемента с максимальными размерами брутто соответственно относительно осей Х и У. 4.5. Расчетную длину элемента l о следует определять умножением его свободной длины l на коэффициент m0 l о = l m0 (10) согласно пп. 4.21 и 6.25. 4.6. Составные элементы на податливых соединениях, опертые всем сечением, следует рассчитывать на прочность и устойчивость по формулам (5) и (6), при этом F нт и F рас определять как суммарные площади всех ветвей. Гибкость составных элементов l следует определять с учетом податливости соединений по формуле
где lу – гибкость всего элемента относительно оси У (рис. 2), вычисленная по расчетной длине элемента l о без учета податливости; l1 – гибкость отдельной ветви относительно оси I–I (см. рис. 2), вычисленная по расчетной длине ветви l 1; при l 1 меньше семи толщин (h 1) ветви принимаются l1 = 0; mу – коэффициент приведения гибкости, определяемый по формуле
где b и h – ширина и высота поперечного сечения элемента, см: n ш – расчетное количество швов в элементе, определяемое числом швов, по которым суммируется взаимный сдвиг элементов (на рис. 2, а – 4 шва, на рис. 2, б – 5 швов); l о – расчетная длина элемента, м; n с – расчетное количество срезов связей в одном шве на 1 м элемента (при нескольких швах с различным количеством срезов следует принимать среднее для всех швов количество срезов); k с – коэффициент податливости соединений, который следует определять по формулам табл. 12. Таблица 12
Примечание. Диаметры гвоздей и нагелей d, толщину элементов а, ширину b пл и толщину d пластинчатых нагелей следует принимать в см. При определении k с диаметр гвоздей следует принимать не более 0,1 толщины соединяемых элементов. Если размер защемленных концов гвоздей менее 4 d, то срезы в примыкающих к ним швах в расчете не учитывают. Значение k с соединений на стальных цилиндрических нагелях следует определять по толщине а более тонкого из соединяемых элементов. При определении k с диаметр дубовых цилиндрических нагелей следует принимать не более 0,25 толщины более тонкого из соединяемых элементов. Связи в швах следует расставлять равномерно по длине элемента. В шарнирно-опертых прямолинейных элементах допускается в средних четвертях длины ставить связи в половинном количестве, вводя в расчет по формуле (12) величину n с, принятую для крайних четвертей длины элемента. Гибкость составного элемента, вычисленную по формуле (11), следует принимать не более гибкости l отдельных ветвей, определяемой по формуле
где å Ii бр – сумма моментов инерции брутто поперечных сечений отдельных ветвей относительно собственных осей, параллельных оси У (см. рис. 2); F бр – площадь сечения брутто элемента; l о – расчетная длина элемента. Гибкость составного элемента относительно оси, проходящей через центры тяжести сечений всех ветвей (ось Х на рис. 2), следует определять как для цельного элемента, т. е. без учета податливости связей, если ветви нагружены равномерно. В случае неравномерно нагруженных ветвей следует руководствоваться п. 4.7. Если ветви составного элемента имеют различное сечение, то расчетную гибкость l1 ветви в формуле (11) следует принимать равной:
определение l 1 приведено на рис. 2. 4.7. Составные элементы на податливых соединениях, часть ветвей которых не оперта по концам, допускается рассчитывать на прочность и устойчивость по формулам (5), (6) при соблюдении следующих условий: а) площади поперечного сечения элемента F нт и F рас следует определять по сечению опертых ветвей; б) гибкость элемента относительно оси У (см. рис. 2) определяется по формуле (11); при этом момент инерции принимается с учетом всех ветвей, а площадь – только опертых; в) при определении гибкости относительно оси Х (см. рис. 2) момент инерции следует определять по формуле I = I о + 0,5 I но, (15) где I о и I но – моменты инерции поперечных сечений соответственно опертых и неопертых ветвей. 4.8. Расчет на устойчивость центрально-сжатых элементов переменного по высоте сечения следует выполнять по формуле
где F макс – площадь поперечного сечения брутто с максимальными размерами; k ж N – коэффициент, учитывающий переменность высоты сечения, определяемый по табл. 1 прил. 4 (для элементов постоянного сечения k ж N = 1); j – коэффициент продольного изгиба, определяемый по п. 4.3 для гибкости, соответствующей сечению с максимальными размерами. Изгибаемые элементы 4.9. Расчет изгибаемых элементов, обеспеченных от потери устойчивости плоской формы деформирования (см. пп. 4.14 и 4.15), на прочность по нормальным напряжениям следует производить по формуле
где М – расчетный изгибающий момент; R и – расчетное сопротивление изгибу; W рас – расчетный момент сопротивления поперечного сечения элемента. Для цельных элементов W рас = W нт; для изгибаемых составных элементов на податливых соединениях расчетный момент сопротивления следует принимать равным моменту сопротивления нетто W нт, умноженному на коэффициент k w; значения k w для элементов, составленных из одинаковых слоев, приведены в табл. 13. При определении W нт ослабления сечений, расположенные на участке элемента длиной до 200 мм, принимают совмещенными в одном сечении. Таблица 13
Примечание. Для промежуточных значений величины пролета и числа слоев коэффициенты определяются интерполяцией. 4.10. Расчет изгибаемых элементов на прочность по скалыванию следует выполнять по формуле
где Q – расчетная поперечная сила; S бр – статический момент брутто сдвигаемой части поперечного сечения элемента относительно нейтральной оси; I бр – момент инерции брутто поперечного сечения элемента относительно нейтральной оси; b рас – расчетная ширина сечения элемента; R ск – расчетное сопротивление скалыванию при изгибе. 4.11. Количество срезов связей n с, равномерно расставленных в каждом шве составного элемента на участке с однозначной эпюрой поперечных сил, должно удовлетворять условию
где Т – расчетная несущая способность связи в данном шве; М А, М В – изгибающие моменты в начальном А и конечном В сечениях рассматриваемого участка. Примечание. При наличии в шве связей разной несущей способности, но одинаковых по характеру работы (например, нагелей и гвоздей), несущие способности их следует суммировать. 4.12. Расчет элементов цельного сечения на прочность при косом изгибе следует производить по формуле
где М х и М у – составляющие расчетного изгибающего момента для главных осей сечения Х и У; W x и W у – моменты сопротивлений поперечного сечения нетто относительно главных осей сечения Х и У. 4.13. Клееные криволинейные элементы, изгибаемые моментом М, уменьшающим их кривизну, следует проверять на радиальные растягивающие напряжения по формуле
где s0 – нормальное напряжение в крайнем волокне растянутой зоны; s i – нормальное напряжение в промежуточном волокне сечения, для которого определяются радиальные растягивающие напряжения; hi – расстояние между крайним и рассматриваемым волокнами; ri – радиус кривизны линии, проходящей через центр тяжести части эпюры нормальных растягивающих напряжений, заключенной между крайним и рассматриваемым волокнами; R р.90 – расчетное сопротивление древесины растяжению поперек волокон, принимаемое по п. 7 табл. 3. 4.14. Расчет на устойчивость плоской формы деформирования изгибаемых элементов прямоугольного постоянного сечения следует производить по формуле
где М – максимальный изгибающий момент на рассматриваемом участке l р; W бр – максимальный момент сопротивления брутто на рассматриваемом участке l p. Коэффициент jМ для изгибаемых элементов прямоугольного постоянного поперечного сечения, шарнирно-закрепленных от смещения из плоскости изгиба и закрепленных от поворота вокруг продольной оси в опорных сечениях, следует определять по формуле
где l p – расстояние между опорными сечениями элемента, а при закреплении сжатой кромки элемента в промежуточных точках от смещения из плоскости изгиба – расстояние между этими точками; b – ширина поперечного сечения; h – максимальная высота поперечного сечения на участке l p; k ф – коэффициент, зависящий от формы эпюры изгибающих моментов на участке l p, определяемый по табл. 2 прил. 4 настоящих норм. При расчете изгибаемых элементов с линейно меняющейся по длине высотой и постоянной шириной поперечного сечения, не имеющих закреплений из плоскости по растянутой от момента М кромке, или при m < 4 коэффициент j М по формуле (23) следует умножать на дополнительный коэффициент k ж М . Значения k ж М приведены в табл. 2 прил. 4. При m ³ 4 k ж М = 1. При подкреплении из плоскости изгиба в промежуточных точках растянутой кромки элемента на участке l p коэффициент j М определенный по формуле (23), следует умножать на коэффициент k п М :
где ap – центральный угол в радианах, определяющий участок l p элемента кругового очертания (для прямолинейных элементов ap = 0); m – число подкрепленных (с одинаковым шагом) точек растянутой кромки на участке l p (при m ³ 4 величину 4.15. Проверку устойчивости плоской формы деформирования изгибаемых элементов постоянного двутаврового или коробчатого поперечного сечений следует производить в тех случаях, когда l p ³ 7 b, (25) где b – ширина сжатого пояса поперечного сечения. Расчет следует производить по формуле
где j – коэффициент продольного изгиба из плоскости изгиба сжатого пояса элемента, определяемый по п. 4.3; R с – расчетное сопротивление сжатию; W бр – момент сопротивления брутто поперечного сечения; в случае фанерных стенок – приведенный момент сопротивления в плоскости изгиба элемента. Не нашли, что искали? Воспользуйтесь поиском:
|