Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Реальные газы, жидкости и твердые тела




 

· Уравнение Ван-дер-Ваальса для одного моля газа

,

для произвольного количества вещества ν газа

,

где а и b – постоянные Ван-дер-Ваальса (рассчитанные на один моль газа); V – объём, занимаемый газом; Vm – молярный объём;

p - давление газа на стенки сосуда.

Внутреннее давление, обусловленное силами взаимодействия молекул,

, или .

· Связь критических параметров – объёма, давления и температуры газа – с постоянными а и b Ван-дер-Ваальса:

; ;

· Внутренняя энергия реального газа

где СV –молярная теплоёмкость газа при постоянном объёме.

· Поверхностное натяжение

где F – сила поверхностного натяжения, действующая на контур l, ограничивающий поверхность жидкость, или

,

где ∆E – изменение свободной энергии поверхностной плёнки жидкости, связанное с изменением площади ∆S – поверхности этой плёнки.

· Формула Лапласа в общем случае записывается в виде

где p-давление, создаваемое изогнутой поверхностью жидкости; σ - поверхностное натяжение; R1 и R2 – радиусы кривизны двух взаимно перпендикулярных сечений жидкости, а в случае сферической поверхности

· Высота подъёма жидкости в капилярной трубке

где θ – краевой угол; R-радиус канала трубки; ρ -плотность жидкости; g -ускорение свободного падения.

· Высота подъёма жидкости между двумя близкими и параллельными плоскостями

,

где d - расстояния между плоскостями.

· Закон Дюлонга и Пти

CV = 3 R,

где CV – молярная (атомная) теплоемкость химически простых твердых тел.

8.1. Кислород (ν = 10 моль) находится в сосуде объемом V = 5 л. Определить: 1) внутреннее давление газа; 2) собственный объем молекул Поправки а и b принять равными соответственно 0,136 Н.м4/моль2 и 3,17.10-5 м3/моль. Ответ: 1) 544 кПа; 2) 79,3 см3.

8.2. Углекислый газ массой 6,6 кг при давлении 0,1 МПа занимает объем 3,75 м3. Определить температуру газа, если: 1) газ реальный; 2) газ идеальный. Поправки a и b принять равными соответственно 0,361 Н.м4/моль2 и 4,28.10-5 м3/моль. Ответ: 1) 302 К; 2) 301 К.

8.3. Углекислый газ массой 2,2 кг находится при температуре 290 К в сосуде вместимостью 30 л. Определить давление газа, если: 1) газ реальный; 2) газ идеальный. Поправки a и b принять равными соответственно 0,361 Н.м4/моль2 и 4,28.10-5 м3/моль. Ответ: 1) 3,32 МПа; 2) 4,02 МПа.

8.4. Плотность азота ρ = 140 кг/м3, его давление P = 10 МПа. Определить температуру газа, если: 1) газ реальный; 2) газ идеальный. Поправки a и b принять равными соответственно 0,135 Н.м4/моль2 и 3,86.10-5 м3/моль. Ответ: 1) 260 К; 2) 241 К.

8.5. Азот (ν = 3 моль) расширяется в вакуум, в результате чего объем газа увеличивается от V 1 = 1 л до V 2 = 5 л. Какое количество теплоты Q необходимо сообщить газу, чтобы его температура осталась неизменной? Поправку a принять равной 0,135 Н.м4/моль2. Ответ: 972 Дж.

8.6. Углекислый газ массой 88 г занимает при температуре 290 К объем 1000 см3. Определить внутреннюю энергию газа, если: 1) газ идеальный; 2) газ реальный. Поправку а принять равной 0,361 Н.м4/моль2. Ответ: 1) 14,5 кДж; 2) 13 кДж.

8.7. Кислород (ν = 2 моль) занимает объем V 1 = 1 л. Определить изменение температуры кислорода, если он адиабатически расширяется в вакууме до объема V 2 = 10 л. Поправку a принять равной 0,136 Н.м4/моль2. Ответ: –11,8 К.

8.8. Азот (ν = 2 моль) адиабатически расширяется в вакуум. Температура газа при этом уменьшается на 1 К. Определить работу, совершаемую газом против межмолекулярных сил притяжения. Ответ: 83,1 Дж.

8.9. Кислород (ν = 1 моль) (реальный газ), занимавший при T 1 = 400 К объем V 1 = 1 л, расширяется изотермически до V 2 = 2 V 1. Определить: 1) работу при расширении; 2) изменение внутренней энергии газа. Поправки a и b принять равными соответственно 0,136 Н·м4/моль2 и 3,17·10-5 м3/моль. Ответ: 1) 2,29 кДж; 2) 68 Дж.

8.10. Определить радиус R капли спирта, вытекающей из узкой вертикальной трубки радиусом r = 1 мм. Считать, что в момент отрыва капля сферическая. Поверхностное натяжение спирта σ = 22 мН/м, а его плотность ρ = 0,8 г/см3. Ответ: 1,61 мм.

8.11. Давление воздуха внутри мыльного пузыря на Δ P = 200 Па больше атмосферного. Определить диаметр d пузыря. Поверхностное натяжение мыльного раствора σ = 40 мН/м. Ответ: 1,6 мм.

8.12. Воздушный пузырек диаметром d = 0,02 мм находится на глубине h = 25 см под поверхностью воды. Определить давление воздуха в этом пузырьке. Атмосферное давление принять нормальным. Поверхностное натяжение воды σ = 73 мН/м, а ее плотность ρ = 1 г/см3. Ответ: 118 кПа.

8.13. Вертикальный капилляр погружен в воду. Определить радиус кривизны мениска, если высота столба воды в трубке h = 20 мм. Плотность воды ρ = 1 г/см3, поверхностное натяжение σ = 73мН/м. Ответ: 744мкм.

8.14. Широкое колено U -образного манометра имеет диаметр d1 = 2 мм, узкое – d2 = 1 мм. Определить разность Δ h уровней ртути в обоих коленах, если поверхностное натяжение ртути σ = 0,5 Н/м, плотность ртути ρ = 13,6 г/см2, а краевой угол θ = 138°. Ответ: 5,6 мм.

8.15. Используя закон Дюлонга и Пти, определить удельную теплоемкость: 1) натрия; 2) алюминия. Ответ: 1) 1,08 кДж/(кг·К); 2) 0,924 кДж/(кг·К).

8.16. Пользуясь законом Дюлонга и Пти, определить, во сколько раз удельная теплоемкость железа больше удельной теплоемкости золота. Ответ: 3,52.

8.17. Для нагревания металлического шарика массой 10 г от 20 до 50 °С затратили количество теплоты, равное 62,8 Дж. Пользуясь законом Дюлонга и Пти, определить материал шарика. Ответ: Олово, так как М = 0,119 кг/моль.

8.18. Изменение энтропии при плавлении 1 моль льда составило 25 Дж/К. Определить, насколько изменится температура плавления льда при увеличении внешнего давления на 1 МПа? Плотность льда ρ1 = 0,9 г/см3, воды ρ2 = 1 г/см3. Ответ: Δ T = –0,08 К.

 

Литература

 

1. Волькенштейн В.С. Сборник задач по курсу физики. – СПб.: СпецЛит, 2001.

2. Трофимова Т.И. Сборник задач по курсу физики для втузов. – М.: «Оникс 21 век», «Мир и Образование», 2003.

3. Чертов А.Г., Воробьев А.А. Задачник по физике. – М.: Интеграл-пресс, 1977.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных