Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Термодинамическая система




Введение

Россия располагает значительными запасами энергетических ресурсов и мощным топливно-энергетическим комплексом, который является базой развития экономики, инструментом проведения внутренней и внешней политики.

Энергетический сектор обеспечивает жизнедеятельность многих отраслей промышленности, консолидацию субъектов Российской Федерации, во многом определяет формирование основных финансово-экономических показателей страны.

Приоритетными задачами энергетической стратегии России являются:

§ полное и надежное обеспечение населения и экономики страны энергоресурсами по доступным и вместе с тем стимулирующим энергосбережение ценам;

§ снижение рисков и недопущение развития кризисных ситуаций в энергообеспечении страны;

§ снижение удельных затрат на производство и использование энергоресурсов за счет рационализации их потребления, применения энергосберегающих технологий и оборудования, сокращения потерь при добыче, транспортировке и реализации продукции топливно-энергетического комплекса и т.д.

Решение многих из этих задач невозможно без использования методологии и математического аппарата, представленного в разделах теплотехники.

Теплотехника – общетехническая дисциплина, изучающая методы получения, преобразования, передачи и использования теплоты, а также принципы действия и конструктивные особенности теплоэнергетических установок и систем.

Теоретической основой теплотехники являются термодинамика и теплопередача, которые являются фундаментальными базовыми дисциплинами для большинства инженерных специальностей.

Термодинамика - наука, изучающая законы превращения энергии и особенности процессов этих превращений.

В основу термодинамики положены основные законы или начала, установленные опытным путем.

Первое начало термодинамики характеризует собой количественное выражение закона сохранения и превращения энергии: «энергия изолированной системы при всех изменениях, происходящих в системе, сохраняет постоянную величину». Отсюда, в частности, следует вывод о невозможности построения вечного двигателя первого рода, способного производить работу без получения энергии извне.

Второе начало характеризует качественную сторону и направленность процессов, происходящих в системе. Второе начало термодинамики отражает принципы существования абсолютной температуры и энтропии, как функций состояния, и возрастания энтропии изолированной термодинамической системы. Важнейшим следствием второго начала является утверждение о невозможности осуществления полных превращений теплоты в работу. Отсюда следует вывод о невозможности построения вечного двигателя второго рода, способного полностью превращать теплоту в работу.

Третье начало термодинамики (закон Нерста) гласит о том, что при абсолютном нуле температур все равновесные процессы происходят без изменения энтропии.

Метод термодинамики заключается в строгом математическом развитии исходных постулатов и основных законов, полученных на основе обобщения общечеловеческого опыта познания природы и допускающих прямую проверку этих положений во всех областях знаний. Термодинамика, построенная по такому принципу, называется феноменологической термодинамикой. Она изучает связи между макроскопическими величинами системы, например, между давлением, температурой и объемом, без описания микроскопических (атомных, молекулярных) явлений.

 

Основные понятия и определения

Исходные понятия, вместе с изложением метода термодинамики и предварительным описанием свойств простейших термодинамических систем, составляют вводную часть курса, предшествующую изложению основных принципов и расчетных соотношений термодинамики.

Термодинамическая система

Объектом изучения термодинамики является термодинамическая система. Под понятием системы подразумевается тело или совокупность тел, находящихся в механическом и тепловом взаимодействии друг с другом и с внешней средой. Система называется закрытой, если она сохраняет постоянное количество вещества при всех происходящих в ней изменениях; если нет, то систему принято называть открытой.

Если между системой и окружающей ее средой нет каких-либо энергетических взаимодействий, то такую систему принято называть изолированной системой.

Система, состоящая из одной фазы вещества или веществ, называется гомогенной. Гомогенная система, неподверженная действию гравитационных, электромагнитных и других сил и имеющая во всех своих частях одинаковые свойства, называется однородной.

Система, состоящая из нескольких гомогенных частей (фаз), отделенных поверхностью раздела, называется гетерогенной.

Термодинамической системой принято называть систему, внутреннее состояние которой определяется значениями определенного количества независимых переменных, которые принято называть параметрами состояния. Если состояние термодинамической системы и ее параметры не изменяются во времени, то говорят, что система находится в равновесном состоянии.

Равновесным состоянием системы называется такое состояние системы, которое может существовать сколь угодно долго при отсутствии внешнего воздействия.

Простейшей термодинамической системой или простым телом называется равновесная система, физическое состояние которой вполне определяется значениями двух независимых переменных. К простым телам относятся: газы, пары, жидкости и многие твердые тела, находящиеся в термодинамическом равновесии и не подверженные химическим превращениям, действию гравитационных и электромагнитных сил.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных