ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Пусть заданы векторы в прямоугольной системе координат
Скалярное произведение векторов.
Определение. Скалярным произведением векторов
Свойства скалярного произведения:
1) 2) 3) 4) 5) (m
Если рассматривать векторы
Используя полученные равенства, получаем формулу для вычисления угла между векторами:
Пример. Найти (5 10 т.к.
Пример. Найти угол между векторами
Т.е.
cosj =
Пример. Найти скалярное произведение (3 15 + 12×36 = 240 – 336 + 432 = 672 – 336 = 336.
Пример. Найти угол между векторами
Т.е.
cosj =
Пример. При каком m векторы
Пример. Найти скалярное произведение векторов (
+ 27 + 51 + 135 + 72 + 252 = 547.
Векторное произведение векторов.
Определение. Векторным произведением векторов 1)
2) вектор 3) Обозначается:
j
Свойства векторного произведения векторов:
1) 2) 3) (m 4) 5) Если заданы векторы
6) Геометрическим смыслом векторного произведения векторов является площадь параллелограмма, построенного на векторах
Пример. Найти векторное произведение векторов
Пример. Вычислить площадь треугольника с вершинами А(2, 2, 2), В(4, 0, 3), С(0, 1, 0).
Пример. Доказать, что векторы
Пример. Найти площадь параллелограмма, построенного на векторах
Смешанное произведение векторов.
Определение. Смешанным произведением векторов Обозначается Смешанное произведение
Свойствасмешанного произведения:
1)Смешанное произведение равно нулю, если: а) хоть один из векторов равен нулю; б) два из векторов коллинеарны; в) векторы компланарны. 2) 3) 4) 5) Объем треугольной пирамиды, образованной векторами
6)Если
Пример. Доказать, что точки А(5; 7; 2), B(3; 1; -1), C(9; 4; -4), D(1; 5; 0) лежат в одной плоскости. Найдем координаты векторов: Найдем смешанное произведение полученных векторов:
Таким образом, полученные выше векторы компланарны, следовательно точки A, B, C и D лежат в одной плоскости.
Пример. Найти объем пирамиды и длину высоты, опущенной на грань BCD, если вершины имеют координаты A(0; 0; 1), B(2; 3; 5), C(6; 2; 3), D(3; 7; 2).
Найдем координаты векторов: Объем пирамиды Для нахождения длины высоты пирамиды найдем сначала площадь основания BCD.
Sосн = Т.к. V = Не нашли, что искали? Воспользуйтесь поиском:
|