ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Введение в обработку результатов измерений
– Мы, кажется, вступили в область догадок, – заметил доктор Мортимер. – Скажите лучше – в область, где взвешиваются все возможности с тем, чтобы выбрать из них наиболее правдоподобную. А. Конан-Дойль «Собака Баскервилей»
Если подбросить монетку, то она может упасть либо гербом, либо противоположной стороной. Причем выпадение герба или «решки» будет в среднем происходить почти одинаково часто. Говорят, что и то, и другое – события случайные. Такие события принято характеризовать положительным числом – вероятностью события. В приведенном примере события происходят с одинаковой вероятностью, равной 0,5. Допустим, что кто-то имеет билет лотереи, в которой на каждые 10 билетов приходится один выигрыш. Можно показать, что в этом случае, при достаточно большом числе билетов в лотерее, вероятность выигрыша для каждого билета составляет 0,1, а вероятность того, что он не выиграет – 0,9.
Теория вероятностей дает возможность подсчитать вероятность различных событий. Возникает вопрос, какой должна быть вероятность события, чтобы его наступление можно было считать возможным в реальных условиях? Ответ на этот вопрос носит в значительной мере субъективный характер и зависит от степени важности ожидаемого события. Известно, что около 5% назначенных концертов отменяется; несмотря на это, мы все же, взяв билет, обычно идем на концерт, будучи, в общем, уверены, что он состоится, хотя вероятность этого всего 0,95. Однако, если бы в 5% полетов терпели аварию пассажирские самолеты, вряд ли мы стали бы пользоваться воздушным транспортом. Можно указать события, вероятность которых столь мала, что они вообще в мире не происходят и, видимо, не произойдут. Так, вероятность того, что обезьяна, ударяя пальцами по клавишам пишущей машинки, напечатает осмысленное литературное произведение, как показали расчеты, составляет примерно 10-2600. Таким же маловероятным (практически невозможным) является так называемое «чудо Джинса» – замерзание воды в чайнике на горячей плите, которое вовсе не противоречит кинетической теории. Английский математик У. Скарборо предложил модель «случайностей» для экспериментального исследования случайных событий. Лист бумаги нужно разграфить на полосы шириной 1 см, среднюю линию считать «прицельной». Затем взять карандаш двумя пальцами за неотточенный конец и, прицеливаясь в среднюю линию, отпустить (уронить) карандаш с высоты 1м. Карандаш, ударившись о бумагу, оставит след – точку. Повторяя падение карандаша 25 – 50 раз, получим множество точек, попавших на различные полосы. Построим график разброса точек относительно прицельной линии. Для этого на вертикальной оси отложим число точек, приходящихся на каждую полоску, а по горизонтальной оси – номера полосок (рис.2, а)
Рис.2. Модель «случайностей». Гистограммы распределения точек по полосам: а – количество падений n = 25 раз, б – количество падений n = 100 раз Получившаяся столбчатая диаграмма носит название гистограммы (histos – столб) распределения (в нашем случае – распределения точек между полосами). На вертикальной оси можно также отложить значения частоты (
где n – общее число падений карандаша на лист бумаги. Считается, что при достаточном увеличении числа испытаний (бросаний) величины частот Если ширину полоски уменьшить, а число падений увеличить, то гистограмма будет несколько иной (рис.2,б). Если продолжить увеличивать число бросков На практике часто принимают, что случайные погрешности измерения физических величин подчиняются нормальному закону распределения. Не нашли, что искали? Воспользуйтесь поиском:
|