![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
ФІЗИЧНІ ОСНОВИ ТЕРМОГРАФІЇ, ЗАКОНИ ТЕПЛОВОГО ВИПРОМІНЮВАННЯТеплове (температурне) випромінювання - це електромагнітне випромінювання тіл, що виникає за рахунок їх внутрішньої енергії (енергії теплового руху атомів та молекул). Теплове випромінювання властиве всім тілам, температура яких вища за абсолютний нуль. Теплове випромінювання тіла людини переважає фізичні поля, що випромінюються ним і можуть бути зареєстровані. Потужність теплового випромінювання з кожного квадратного сантиметра поверхні тіла становить приблизня Теплове випромінювання тіла людини має неперервний спектр, максимум якого залежить від температури тіла. Із збільшенням температури загальна енергія теплового випромінювання зростає, а максимум зсувається в бік менших довжин хвиль. Ці фактори можуть бути використані в медицині, зокрема в діагностиці. У здорової людини розподіл температури по різних точках поверхні тіла досить характеристичний. Але запальні процеси, пухлини здатні значно змінювати місцеву температуру. Таким чином, реєстрація випромінювання різних ділянок поверхні тіла і визначення їх температури може служити діагностичним методом. Такий метод називається термографією. Теоретичну основу цього методу становлять закони теплового випромінювання. Введемо основні характеристики теплового випромінювання. Потік випромінювання Ф - середня потужність випромінювання за проміжок часу, який значно перевищує період електромагнітних коливань. Потік Ф вимірюється у ватах (Вт). Потік випромінювання з одиниці площі поверхні тіла називають енергетичною світністю тіла Енергетична світність тіла, що віднесена до одиниці спектрального інтервалу, називається спектральною густиною енергетичної світності Величина спектральної густини енергетичної світності залежить від довжини хвилі. Залежність
саме тому Введемо характеристики поглинаючої здатності тіла. Коефіцієнтом поглинання Якщо величина а віднесена до одиничного спектрального інтервалу, то говорять про монохроматичний коефіцієнт поглинання Тіло, для якого монохроматичний коефіцієнт поглинання дорівнює одиниці у всьому спектральному інтервалі і при будь-якій температурі, називається абсолютно чорним, тобто Моделлю абсолютно чорного тіла може бути порожнина з дуже малим отвором (рис. 6.36). Промінь будь-якої довжини хвилі, що попав всередину такої порожнини, може вийти з неї тільки після багатократних відбивань. При кожному відбиванні від стінок порожнини частина енергії променю поглинається і лише мізерна частка енергії променів, що попали в отвір, зможе вийти назад; тому коефіцієнт поглинання отвору виявиться близьким до одиниці. У теорії теплового випромінювання вводять також поняття сірого тіла. Це тіло, коефіцієнт поглинання якого менший за одиницю і не залежить від довжини хвилі. Тіло людини можна вважати сірим в інфрачервоній частині спектра, оскільки його коефіцієнт поглинання у цьому спектральному діапазоні Рис. 6.36. Модель абсолютного чорного тіла. На рис. 6.37 відображена залежність монохроматичного коефіцієнта поглинання довільного тіла від довжини хвилі при даній температурі. При зміні температури характер кривої Рис. 6.37. Залежність монохроматичного коефіцієнта поглинання від довжини хвилі. Теплове випромінювання підпорядковується таким основним законам: закону Кірхгофа, який виконується для будь-якого тіла, та трьом законам, які виконуються лише для абсолютно чорного тіла - закону випромінювання Планка, закону Стефана-Больцмана і закону зміщення Віна. Закон Кірхгофа
Закон Кірхгофа встановлює кількісний зв'язок між випромінюючою та поглинаючою здатностями тіл. Цей закон, який був отриманий Кірхгофом у 1859 році, стверджує, що відношення спектральної густини енергетичної світності до монохроматичного коефіцієнта поглинання однакове для всіх тіл при даній температурі і дорівнює спектральній густині енергетичної світності абсолютно чорного тіла при тій самій температурі:
де Іншими словами, відношення випромінюючої здатності тіл до їх поглинаючої здатності не залежить від природи випромінюючого тіла і дорівнює випромінюючій здатності абсолютно чорного тіла при даній температурі. Із закону Кірхгофа маємо: 1. Спектральна густина енергетичної світності На рис. 6.38 наведено експериментальні криві розподілу енергії в спектрах теплового випромінювання абсолютно чорного тіла 1, "сірого" тіла 2 і довільного тіла 3. Крива спектрального розподілу енергії для "сірого" тіла може бути отримана із кривої розподілу енергії для абсолютно чорного тіла шляхом множення ординат останньої на постійний множник, менший за одиницю і рівний коефіцієнту поглинання сірого тіла. Випромінювання деяких тіл є селективним. Крива випромінювання 3 таких тіл може мати кілька максимумів і мінімумів, але вся вона завжди розташована нижче кривої випромінювання абсолютно чорного тіла, як цього і потребує закон Кірхгофа. 2. Якщо Таким чином, абсолютно чорне тіло є найбільш інтенсивним джерелом теплового випромінювання. Закон випромінювання Планка
На рис. 6.39 наведені емпіричні криві розподілу енергії в спектрі теплового випромінювання абсолютно чорного тіла при різних температурах, з яких видно, що максимум спектральної густини енергетичної світності при зростанні температури зсувається в бік коротких хвиль. Довгий час не вдавалося теоретично отримати залежність Рис. 8.38. Криві розподілу енер- Рис. 8.39. Спектри теплового гії в спектрах теплового випро- випромінювання абсолютно чор- мінювання різних тіл. ного тіла при різних темпера- турах. Для визначення виду функції
де Якщо розподіл енергії в спектрі абсолютно чорного тіла подавати в шкалі частот, то замість Оскільки Враховуючи цей зв'язок, формулу Планка (6.24) можна подати у вигляді
Криві повністю відповідають експериментальним кривим (див. рис. 6.39).
Не нашли, что искали? Воспользуйтесь поиском:
|