ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Предварительные итогиИтак, посмотрим, где мы находимся. К середине 1980-х гг. физики построили пять теорий суперструн. При исследовании приближенными методами теории возмущений свойства пяти теорий казались различными. Однако эти приближенные методы применимы лишь тогда, когда константа связи струны меньше 1. Ожидалось, что константу связи в каждой теории можно будет вычислить точно, но из вида приближенных уравнений для констант стало ясно, что такое вычисление в настоящее время невозможно. Поэтому физики направили свои усилия на изучение всех пяти теорий в допустимых диапазонах соответствующих констант связи, как для констант, меньших 1, так и больших 1, т.е. при слабой и при сильной связи. Однако попытки определить свойства любой из этих теорий в области сильной связи на основе традиционных методов теории возмущений оказались тщетными. В настоящее время физики научились рассчитывать определенные характеристики каждой теории струн в области сильной связи, используя мощный формализм суперсимметрии. Ко всеобщему изумлению всех теоретиков, свойства теории О-гетеротических струн в области сильной связи оказались идентичными свойствам теории струн типа 1 Глава 12. За рамками струн: в поисках М-теории 201 в области слабой связи, и наоборот. Более того, свойства теории струн типа IIВ в области сильной связи оказались идентичными свойствам той же теории в области слабой связи. Эти неожиданные открытия побуждают нас, следуя Виттену, перейти к анализу двух оставшихся теорий струн, струн типа IIА и Е-гетеротической струны, и выяснить, как эти теории вписываются в общую картину. И здесь нас ожидают еще более удивительные неожиданности. Для того чтобы подготовиться к ним, необходимо совершить краткий исторический экскурс. Супергравитация В конце 1970-х - начале 1980-х гг., до всплеска бурного интереса к теории струн, многие физики-теоретики пытались объединить квантовую теорию, гравитацию и другие взаимодействия в формализме единой теории поля для точечных частиц. Они надеялись, что препятствия, возникающие при попытках объединить теории точечных частиц, включающие квантовую механику и гравитацию, будут устранены при исследовании теорий с высокой степенью симметрии. В 1976 г. сотрудники Нью-йоркского университета Стони Брук Дэниел Фридман, Серджо Феррара и Питер ван Ньювенхейзен обнаружили, что наиболее многообещающими являются теории на основе суперсимметрии, так как в них сокращения многих квантовых флуктуаций бозонов и фермионов помогают умиротворить хаос на микроскопических масштабах. В своей работе эти ученые дали название супергравитация суперсимметричным квантовым теориям, которые разрабатывались с целью включить общую теорию относительности в единый формализм. Попытки разработать такие теории не увенчались успехом. Тем не менее, как отмечено в главе 8, урок, предвосхитивший развитие теории струн, не прошел даром. Урок, смысл которого, вероятно, стал более ясен после работы сотрудников Парижской высшей технической школы Юджина Креммера, Бернара Джулиа и Шерка (1978 г.) состоял в том, что успешнее остальных оказались попытки построить теории супергравитации не в четырех, а в большем числе измерений. А именно, наиболее перспективными оказались варианты теорий в десяти или одиннадцати измерениях, при этом число одиннадцать оказалось максимально возможным числом измерений11). Связь с четырьмя наблюдаемыми измерениями в этих теориях также обеспечивалась путем использования формализма Калуцы—Клейна: лишние измерения сворачивались. В десятимерных теориях, как и в теории струн, сворачивалось шесть измерений, а в 11-мерной теории сворачивалось семь измерений. Когда в 1984 г. теория струн увлекла многих физиков, виды на будущее у теорий супергравитации для точечных частиц резко ухудшились. Как уже неоднократно подчеркивалось, при точности, доступной сегодня и в обозримом будущем, струны выглядят, как точечные частицы. Это неформальное замечание можно сформулировать и в строгой форме: при изучении низкоэнергетических процессов в теории струн, т. е. процессов, в которых энергии недостаточно велики для того, чтобы прощупать протяженную ультрамикроскопическую структуру струны, можно аппроксимировать струну бесструктурной точечной частицей в формализме квантовой теории поля. Для процессов на малых расстояниях или процессов при больших энергиях такое приближение не подходит, так как мы знаем, что протяженность струны является важнейшим свойством, позволяющим разрешить конфликты между общей теорией относительности и квантовой теорией, которые теория точечных частиц разрешить не в состоянии. Однако при достаточно низких энергиях или на достаточно больших расстояниях эти проблемы не возникают, и такое приближение часто делается для удобства вычислений. Примечательно, что квантовой теорией поля, дающей наилучшее приближение теории струн в указанном смысле, является десятимерная теория супергравитации. Особые свойства этой теории, обнаруженные в 1970-х и 1980-х гг., теперь находят свое объяснение: они являются низкоэнергетическими отголосками свойств теории струн. Исследователи, изучавшие десятимерную супергравитацию, обнаружили лишь вершину 202 Часть IV. Теория струн и структура пространства-времени огромного айсберга конструкции теории суперструн. В действительности оказывается, что существуют четыре различных теории десятимерной супергравитации, и эти теории отличаются в деталях конкретной реализации суперсимметрии. Три из них являются низкоэнергетическими приближениями струн типа ПА, типа ИВ и Е-гетеротических струн точечными частицами. Четвертая теория является низкоэнергетическим пределом как струн типа I, так и О-гетеротических струн; в ретроспективе, этот факт был первым указанием на близость двух последних теорий. Схема выглядит безупречной, вот только 11-мерная супергравитация осталась не у дел. В теории струн, которая формулируется в десяти измерениях, кажется, нет места для 11-мерной теории. На протяжении нескольких лет большинство физиков за редким исключением рассматривали 11-мерную супергравитацию в качестве математического курьеза, не имеющего никакого отношения к физике теории струн12). Проблески М-теории Сегодня точка зрения радикально изменилась. На конференции «Струны-95» Виттен сделал следующее утверждение: если взять теорию струн типа IIА с константой связи, много меньшей 1, и увеличивать константу связи до значения, много большего 1, то физические свойства, которые мы еще способны анализировать (по существу, свойства насыщенных БПС-состояний), в низкоэнергетическом пределе будут соответствовать свойствам 11-мерной супергравитации. Когда Виттен объявил о своем открытии, все присутствовавшие в аудитории потеряли дар речи, а позже весть об этом открытии громом пронеслась по всем институтам, где занимаются теорией струн. Почти для всех специалистов в этой области результат был полной неожиданностью. Первая реакция читателя этой книги, возможно, тоже будет напоминать реакцию большинства экспертов: какое отношение может иметь теория, характерная для одиннадцати измерений, к другой теории в десяти измерениях? Ответ несет в себе глубокий смысл. Чтобы понять его, нужно описать результат Виттена более точно. На самом деле, сначала проще обратиться к другому тесно связанному с этим результату, полученному чуть позже Виттеном и стажером Принстонского университета Петром Хофавой для теории Е-гетеротической струны. Для этой теории в области сильной связи ими также было найдено описание в терминах 11-мерной теории; это поясняется на рис. 12.7. Слева на этом рисунке схематически показана теория Е-гетеротической струны с константой связи, много меньшей 1. Эта область констант связи рассматривалась в предыдущих главах и изучалась теоретиками на протяжении более десяти лет. При переходе вправо на рис. 12.7 значение константы связи постепенно увеличивается. До 1995 г. теоретикам было известно, что при этом вклады петлевых диаграмм (см. рис. 12.6) будут становиться все более важными, и при дальнейшем увеличении константы связи весь формализм теории возмущений перестает быть справедливым. Но никто не мог даже вообразить того, что при увеличении константы связи проявится новое измерение! На рис. 12.7 это измерение соответствует вертикали. Нужно помнить, что двумерная сетка на рисунке, с которого мы начали обсуждение, представляет все девять пространственных измерений Е-гетеротической струны. Новое измерение по вертикали будет десятым пространственным, так что вместе с временным измерением в сумме получается одиннадцать пространственно-временных измерений. Кроме того, на рис. 12.7 иллюстрируется важнейшее следствие существования этого нового измерения. Структура Е-гетеротической струны меняется по мере роста этого измерения. При увеличении константы связи из одномерной петли она растягивается в ленту, а затем — в деформированный цилиндр! Другими словами, Е-гетеротическая струна становится двумерной мембраной, ширина которой (протяженность по вертикали на рис. 12.7) определяется значением константы связи. Более десятилетия теоретики всегда использовали методы теории возму- Глава 12. За рамками струн: в поисках М-твории 203
щений, основанные на предположении малости константы связи. Как показал Виттен, в этом предположении фундаментальные объекты микромира выглядят и ведут себя подобно струнам, даже если у них имеется скрытое второе пространственное измерение. Если отказаться от предположения о малости константы связи и рассмотреть физические характеристики Е-гетеротической струны при больших константах связи, второе измерение станет явным. Это утверждение не обесценивает ни одного из выводов предыдущих глав, но побуждает рассмотреть их в рамках нового формализма. Возникает, например, вопрос, как можно состыковать новые результаты с тем, что в теории струн требуется одно временное и девять пространственных измерений? Что же, как обсуждалось в главе 8, это ограничение возникает при расчете числа различных направлений, в которых может колебаться струна, и число измерений выбирается так, чтобы квантово-механические вероятности гарантированно имели осмысленные значения. Новое измерение не является измерением, в котором может колебаться Е-гетеротическая струна, так как оно зафиксировано в самой структуре «струны». Кроме того, в формализме теории возмущений, который использовался физиками для вывода ограничения на число пространственно-временных измерений, предполагалась, что константа связи Е-гетеротической струны мала. И хотя это было осознано гораздо позднее, в таком предположении неявно используются два взаимосогласованных приближения: малая ширина мембраны на рис. 12.7, при которой она выглядит, как струна, и малый размер одиннадцатого измерения, не влияющий на вид уравнений теории возмущений. В рамках этой приближенной схемы мы вынуждены представлять себе Вселенную десятимерной и заполненной одномерными струнами. Теперь мы видим, что она 11-мерная и заполнена двумерными мембранами. По техническим причинам, впервые Виттен столкнулся с одиннадцатым измерением при исследовании сильной связи струны типа ПА, для которой ситуация вполне аналогична. Как и в случае Е-гетеротической струны, размер одиннадцатого измерения в случае струны типа ПА определяется значением ее константы связи. При увеличении этого значения новое измерение расширяется. По мере расширения, однако, струна типа ПА превращается в «велосипедную камеру» (см. рис. 12.8), а не в ленту, как в случае Е-гетеротической струны. И снова, согласно Виттену, традиционные представления физиков о струнах типа IIА как об одномерных объектах, имеющих длину, но не имеющих толщины, есть следствие использования ими формализма теории возмущений, в котором константа связи струны предполагается малой. Если законы природы требуют, чтобы константа связи действительно была малой, то это приближение оправдано. Однако результаты Виттена и других физиков, полученные в ходе второй революции в теории суперструн, убедительно свидетельствуют о том, что «струны» типа ПА и Е-гетеротические «струны» имеют фундаментальную структуру двумерных мембран, живущих в 11-мерной вселенной.
204 Часть IV. Теория струн и структура пространства-времени Но что представляет собой 11-мерная теория? Согласно Виттену и другим исследователям, при низких (по сравнению с планковской) энергиях она аппроксимируется почти позабытой всеми 11-мерной квантово-полевой теорией супергравитации. А как же тогда описать эту теорию при высоких энергиях? Сейчас этот вопрос тщательно исследуется. Как показано на рис. 12.7 и 12.8, в такой 11-мерной теории существуют двумерные протяженные объекты — двумерные мембраны. Как мы вскоре увидим, важную роль играют и протяженные объекты других размерностей. Однако об этой 11-мерной теории ничего не известно, кроме набора разнородных фактов. Являются ли мембраны ее фундаментальными объектами? Каковы ее определяющие свойства? Благодаря каким ее свойствам она может быть связана со знакомой нам физикой? Если соответствующие константы связи малы, то лучшие ответы, которые можно дать сейчас, уже описаны в предыдущих главах, так как при малых константах связи мы возвращаемся обратно к теории струн. Но для больших констант связи в настоящее время ответов не знает никто. Для этой II-мерной теории, что бы она собой ни представляла, Виттен придумал рабочее название: М-теория. Все расшифровывают это название по-разному. Вот примеры: мистическая теория, материнская теория («мать всех теорий»), мембранная теория (так как мембраны в любом случае играют в ней роль), матричная теория (после недавних работ Тома Бэнкса из университета Ратгерса, Вилли Фишлера из Техасского университета в Остине, Стивена Шенкера из университета Ратгерса, Сасскинда и других, предложивших новую интерпретацию теории). Однако и без точной расшифровки названия или знания ее свойств уже сейчас ясно, что М-теория дает основу для объединения всех пяти теорий струн. Не нашли, что искали? Воспользуйтесь поиском:
|