ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Результаты численного интегрирования тестовой задачи.
Результаты расчета показывают, что при использовании методов левых и правых прямоугольников для обеспечения даже невысокой точности вычисления приходится проводить с очень мелким шагом, приводящим к значительному увеличению продолжительности счета. При этом незначительное усовершенствование методов и переход к формулам средних прямоугольников или трапеций в несколько раз снижает погрешность вычислений, причем преимущество усовершенствования возрастает с увеличением требуемой точности расчета. По этой причине методы левых и правых прямоугольников практически не используются. Как и следовало ожидать, наиболее точным оказался метод Симпсона. Применение трехточечной формулы позволяет проводить вычисления с более широким шагом интегрирования. При заданной точности вычисления интеграла общее количество вычислений функции меньше, несмотря на то, что по методу Симпсона в зависимости то выбранной схемы на каждом шаге производится два или три обращения к функции по сравнению с однократным обращением в методах средних прямоугольников и трапеций. Погрешность метода средних прямоугольников при вычислениях с постоянным шагом D x оценивается величиной , где - вторая производная функции f (x). Погрешность метода трапеций приблизительно равна . В общем случае погрешность формулы средних прямоугольников примерно вдвое меньше, чем у формулы трапеций. Поэтому, если значения функции одинаково легко определяются в любых точках, то лучше вести расчет по более точной формуле средних прямоугольников. Метод трапеций употребляют в тех случаях, когда функция задана только в узлах сетки, а в середине интервала ее значения неизвестны. Главные члены погрешностей у формул средних прямоугольников и трапеций имеют различные знаки, поэтому, если вести расчеты по обеим формулам, точное значение интеграла будет, как правило, находиться в вилке между ними. Используя это свойство, можно добиться повышения точности расчетов. Так как , , то, применяя комбинированную формулу , сократим основные источники погрешностей. Подставляя в нее конкретные значения, получим формулу , соответствующую методу Симпсона, погрешность которого оценивается величиной . В методах средних прямоугольников и трапеций уменьшение шага интегрирования D x вдвое уменьшает погрешность оценки площади элементарного прямоугольника в 8 раз, однако, общее количество этих прямоугольников увеличивается в 2 раза, поэтому общая погрешность уменьшается приблизительно в 4 раза. Коэффициент уменьшения ошибки пропорционален величине второй производной и обычно не равен в точности 4, поскольку не является константой и сказывается также влияние членов более высокого порядка. Однако, при реальных вычислениях с функциями, имеющими непрерывные ограниченные вторые производные, можно ожидать, что удвоение числа элементарных отрезков для любой формулы – средних прямоугольников или трапеций – приблизительно учетверяет точность. Если в методе Симпсона уменьшить шаг D x в два раза, то каждое уменьшится в 32 раза, при этом общее количество элементарных фигур возрастет в 2 раза. Погрешность в целом уменьшится приблизительно в 16 раз. При выборе количества разбиений n или величины шага D x заранее неизвестно, какова будет погрешность вычисления интеграла. Кроме того, точное значение интеграла также неизвестно и сравнить полученное значение с точным нельзя. Для оценки точности вычисления сравнивают два последовательных приближения к результату. Сначала задают некоторое начальное n1, для которого вычисляют приближенное значение S1. Затем число участков удваивают, n1 =2 n1, соответственно длины участков сокращаются вдвое, . Далее вычисляют новую сумму площадей более узких фигур S2. Она точнее приближает искомое значение интеграла. Разность сравнивают с наперед заданным малым положительным числом e. При считают, что S2 можно принять за приближенное значение интеграла, полученное с заданной точностью e. В противном случае процесс деления отрезков повторяют, принимая n3=2n2, вычисляют S3 и сравнивают с e. Для непрерывных функций условие должно наступить обязательно, если e>eмаш. Следует отметить, что выполнение условия в общем случае не означает, что погрешность вычисления интеграла меньше величины e. Здесь сравнивается окончательное значение Sk не с точным значением, а с вычисленным ранее при более крупном шаге интегрирования. Тем не менее, для многих функций такая оценка величины погрешности является достаточной.
Не нашли, что искали? Воспользуйтесь поиском:
|