Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Пример доказательства свойства программы.




На основании доказанных правил верификации программ можно доказывать свойства программ, состоящих из операторов присваивания и пустых операторов и использующих три основные композиции структурного программирования. Для этого, анализируя структуру программы и используя заданные ее пред- и постусловия, необходимо на каждом шаге анализа применять подходящее правило верификации. В случае применения композиции повторения потребуется подобрать подходящий инвариант цикла.

В качестве примера докажем свойство (9.4). Это доказательство будет состоять из следующих шагов.

(Шаг 1). n>0 Þ (n>0, p - любое, m - любое).

(Шаг 2). Имеет место

{n>0, p - любое, m - любое} p:=1 {n>0, p=1, m - любое}.

-- По теореме 9.2.

(Шаг 3). Имеет место

{n>0, p=1, m - любое} m:=1 {n>0, p=1, m=1}.

-- По теореме 9.2.

(Шаг 4). Имеет место

{n>0, p - любое, m - любое} p:=1; m:=1 {n>0, p=1, m=1}.

-- По теореме 9.3 в силу результатов шагов 2 и 3.

Докажем, что предикат p= m! является инвариантом цикла, т.е. {p=m!} m:=m+1; p:=p*m {p=m!}.

(Шаг 5). Имеет место {p= m!} m:= m+1 {p= (m-1)!}.

-- По теореме 9.2, если представить предусловие в виде {p= ((m+1)-1)!}.

(Шаг 6). Имеет место {p= (m-1)!} p:= p*m {p= m!}.

-- По теореме 9.2, если представить предусловие в виде {p*m= m!}.

(Шаг 7). Имеет место инвариант цикл

{p= m!} m:= m+1; p:= p*m {p= m!}.

-- По теореме 9.3 в силу результатов шагов 5 и 6.

(Шаг 8). Имеет место

{n>0, p=1, m=1} ПОКА m <> n ДЕЛАТЬ

m:= m+1; p:= p*m

ВСЕ ПОКА {p= n!}.

-- По теореме 9.6 в силу результата шага 7 и имея в виду, что (n>0, p=1, m= 1)Þ p= m!; (p= m!, m= n)Þ p= n!.

(Шаг 9). Имеет место

{n>0, p - любое, m - любое} p:=1; m:=1;

ПОКА m <> n ДЕЛАТЬ

m:= m+1; p:= p*m

ВСЕ ПОКА {p= n!}.

-- По теореме 9.3 в силу результатов шагов 3 и 8.

(Шаг 10). Имеет место свойство (9.4) по теореме 9.5 в силу результатов шагов 1 и 9.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных