Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Простейшие одноразрядные счетчики импульсов




 

Простейшим одноразрядным счетчиком импульсов может быть JK-триггер и D-триггер, работающий в счетном режиме. Он считает входные импульсы по модулю 2—каждый импульс переключает триггер в противоположное состояние. Один триггер считает до двух, два соединенных последовательно считают до четырех, п триггеров—до 2n импульсов. Результат счета формируется в заданном коде, который может храниться в памяти счетчика или быть считанным другим устройством цифровой техники—дешифратором.




На рисунке показана схема трехразрядного двоичного счетчика импульсов, построенного на JK-триггер ax K155TB1. Смонтируйте такой счетчик на макетной панели и к прямым выходам триггеров подключите светодиодные (или транзисторные — с лампой накаливания) индикаторы, как это делали ранее. Подайте от испытательного генератора на вход С первого триггера счетчика серию импульсов с частотой следования 1... 2 Гц и по световым сигналам индикаторов постройте графики работы счетчика.
Если в начальный момент все триггеры счетчика находились в нулевом состоянии (можно установить кнопочным выключателем SB1 «Уст.0», подавая на вход R триггеров напряжение низкого уровня), то по спаду первого же импульса


(рис. 45,6) триггер DD1 переключится в единичное состояние—на его прямом выходе появится высокий уровень напряжения (рис. 45,в). Второй импульс переключит триггер DD1 в нулевое состояние, а триггер DD2—B единичное (рис. 45,г). По спаду третьего импульса триггеры DD1 и DD2 окажутся в единичном состоянии, а триггер DD3 все еще будет в нулевом. Четвертый импульс переключит первые два триггера в нулевое состояние, а третий в единичное (рис. 45,д). Восьмой импульс переключит все триггеры в нулевое состояние. По спаду девятого входного импульса начнется следующий цикл работы трехразрядного счетчика импульсов.
Изучая графики, нетрудно заметить, что каждый старший разряд счетчика отличается от младшего удвоенным числом импульсов счета. Так, период импульсов на выходе первого триггера в 2 раза больше периода входных импульсов, на выходе второго триггера — в 4 раза, на выходе третьего триггера — в 8 раз. Говоря языком цифровой техники, такой счетчик работает в весовом коде 1-2-4. Здесь под термином «вес» имеется в виду объем информации, принятой счетчиком после установки его триггеров в нулевое состояние. В устройствах и приборах цифровой техники наибольшее распространение получили четырехразрядные счетчики импульсов, работающие в весовом коде 1-2-4-8. Делители частоты считают входные импульсы до некоторого задаваемого коэффициентом счета состояния, а затем формируют сигнал переключения триггеров я нулевое состояние, вновь начинают счет входных импульсов до задаваемого коэффициента счета и т. д.

 



показаны схема и графики работы делителя с коэффициентом счета 5, построенного на JK-триггерах Здесь уже знакомый вам трехразрядный двоичный счетчик дополнен логическим элементом 2Й-НЕ DD4.1, который и задает коэффициент счета 5. Происходит это так. При первых четырех входных импульсах (после установки триггеров в нулевое состояние кнопкой SB1 «Уст. 0») устройство работает как обычный двоичный счетчик импульсов. При этом на одном или обоих входах элемента DD4.1 действует низкий уровень напряжения, поэтому элемент находится в единичном состоянии.



По спаду же пятого импульса на прямом выходе первого и третьего триггеров, а значит, и на обоих входах элемента DD4.1 появляется высокий уровень напряжения, переключающий этот логический элемент а нулевое состояние. В этот момент на его выходе формируется короткий импульс низкого уровня, который через диод VD1 передается на вход R всех триггеров и переключает их в исходное нулевое состояние.

С этого момента начинается следующий цикл работы счетчика. Резистор R1 и диод VD1, введенные в этот счетчик, необходимы для того, чтобы исключить замыкание выхода элемента DD4.1 на общий провод.
Действие такого делителя частоты можете проверить, подавая на вход С первого его триггера импульсы, следующие с частотой 1... 2 Гц, и подключив к выходу триггера DD3 световой индикатор.
На практике функции счетчиков импульсов и делителей частоты выполняют специально разработанные микросхемы повышенной степени интеграции. В серии К155, например, это счетчики К155ИЕ1, К155ИЕ2, К155ИЕ4 и др.

В радиолюбительских разработках наиболее широко используют микросхемы К155ИЕ1 и К155ИЕ2. Условные графические обозначения этих микросхем-счетчиков с нумерацией их выводов показаны на рис. 47.

Микросхему К155ИЕ1 (рис. 47,а) называют декадным счетчиком импульсов, т. е. счетчиком с коэффициентом счета 10. Он содержит четыре триггера, соединенных между собой последовательно. Выход (вывод 5) микросхемы — выход ее четвертого триггера. Устанавливают все триггеры в нулевое состояние подачей напряжения высокого уровня одновременно на оба входа R (выводы 1 и 2), объединенные по схеме элемента И (условный символ «&»). Счетные импульсы, которые должны иметь низкий уровень, можно подавать на соединенные вместе входы С (выводы 8 и 9), также объединенные по И. или на один из них, если в это время на втором будет высокий уровень напряжения. При каждом десятом входном импульсе на выходе счетчик формирует равный по длительности входному импульс низкого уровня. Микросхема К155ИЕ2 (рис.48,б)

—двоично-десятичный четырехразрядный счетчик. В нем также четыре триггера, но первый из них имеет отдельные вход С1 (вывод 14) и отдельный прямой выход (вывод 12). Три других триггера соединены между собой так, что образуют делитель на 5. При соединении выхода первого триггера (вывод 12) со входом С2 (вывод 1) цепи остальных триггеров микросхема становится делителем на 10 (рис. 48, а), работающем в коде 1-2-4-8, что и символизируют цифры у выходов графического обозначения микросхемы. Для установки триггеров счетчика в нулевое состояние подают на оба входа R0 (выводы 2 и 3) напряжение высокого уровня.

Два объединенных входа R0 и четыре разделительных выхода микросхемы К155ИЕ2 позволяют без дополнительных элементов строить делители частоты с коэффициентами деления от 2 до 10. Так, например, если соединить между собой выводы 12 и 1, 9 и 2, 8 н 3 (рис. 48,6), то коэффициент счета будет 6, а при соединении выводов 12 и 1, 11,. 2 и 3 (рис. 48,в) коэффициент счета станет 8. Эта особенность микросхемы К155ИЕ2 позволяет использовать ее и как двоичный счетчик импульсов, и как делитель частоты.

Недвоичные счетчики. Недвоичные счетчики имеют Ксч 2 m. Принцип их построения заключается в исключении некоторых устойчивых состояний обычного двоичного счетчика. Избыточные состояния исключаются с помощью обратных связей внутри счетчика. Как было показано ранее, количество триггеров в недвоичном счетчике есть округленное до большего целого числа значение mнедв =[ log 2 Kсч ]. Поэтому, если задействовать все возможные состояния m триггеров, то счетчик окажется двоичным. Организуя обратные связи в двоичном счетчике таким образом, чтобы определенными выходными кодовыми комбинациями осуществлять либо его обнуление, либо установку в состояние, отличное от очередного, реализуется недвоичный счетчик с произвольным Ксч. Часть состояний двоичного счетчика, таким образом, пропускаются.

Наибольший интерес среди недвоичных счетчиков представляют двоично-десятичные счетчики с Ксч =10, которые строятся на основе четырех счетных триггеров. Важность этого класса счетчиков заключается в том, что с их помощью легко может быть осуществлен вывод содержимого счетчика в десятичном коде. Действительно каждый двоично-десятичный счетчик имеет десять устойчивых состояний и соответствует одному разряду десятичной системы счисления.

В условном графическом обозначении функция двоичного счетчика определяется символами «СТ». В случае, если счетчик не двоичный, то рядом с этими символами проставляется цифра, соответствующая модулю счета. В маркировке микросхем функция счетчика кодируются символами «ИЕ».

Регистры.

Регистрами называются последовательностные цифровые устройства, выполняющие функции приема, хранения и передачи информации. Информация в регистре хранится в виде двоичного кода, т.е. представлена комбинацией сигналов логического нуля и логической единицы. Каждому разряду кода, записанному в регистр, соответствует свой разряд регистра, как правило, на основе триггеров RS-, D- или JK-типа. Основным классификационным признаком, по которому различают регистры, является способ записи информации или кода числа в регистр. По этому признаку можно выделить регистры следующих типов:

§ параллельные;

§ последовательные;

§ последовательно-параллельные.

В параллельные регистры запись (считывание) числа осуществляется параллельным кодом, т.е. во все разряды регистра одновременно. Последовательные регистры характеризуются последовательной записью (считыванием) кода числа, начиная с младшего разряда или старшего путем последовательного сдвига кода тактирующими импульсами. В последовательно-параллельных регистрах ввод или вывод информации может осуществляться как в параллельном, так и в последовательном кодах.

Время ввода числа в регистр параллельного типа равно времени ввода одного разряда. Время ввода числа в регистр последовательного типа равно m×T, где m - число разрядов вводимого числа, а T - период следования тактирующих сигналов, осуществляющих ввод (вывод) информации.

По способу представления вводимой информации различают регистры однофазного и парафазного типа. В однофазных регистрах информация вводится по одному каналу (прямому или инверсному). Информация на выходе представлена в прямом или в обратном коде. В парафазных регистрах ввод информации осуществляется по двум каналам одновременно (прямому и инверсному), т.е. информация представлена одновременно в прямом и обратном кодах. Информация на выходе, как правило, также представляется в прямом и инверсном кодах.

Параллельные регистры. Параллельный регистр используется для кратковременного хранения чисел, представленных в параллельном двоичном коде. Поэтому параллельные регистры называются еще регистрами памяти. Рассмотрим способы построения регистров памяти на триггерах RS-типа. Каждый триггер служит для хранения одного разряда числа, значит, для хранения m -разрядного двоичного числа необходимо иметь m RS-триггеров. Как следует из таблицы переходов RS-триггера, для записи единицы необходимо подавать единицу на вход S и нуль на вход R, а для записи нуля – наоборот – единицу на вход R и нуль на вход S, т.е. информация должна поступать на оба входа RS-триггера. Полученный регистр будет парафазным, причем вход S - прямой, а вход R - инверсный. Для синхронной записи во все триггеры одновременно, их тактовые входы необходимо объединить в одну шину (рис. 5.20).

Рис. 5.20. Структурная схема параллельного парафазного регистра на синхронных RS-триггерах.

Чтобы получить нулевой сигнал на выходе, при Sn =0, необходимо чтобы Qn =0, т.е. перед записью необходимо обнулить триггер. Для этого нужно объединить все входы R и при подаче на информационные входы S сигнала с уровнем логического нуля, подать на объединенные входы R логические единицы (рис. 5.21). Таким образом, осуществляется предварительная установка триггеров в нулевое состояние. Если теперь на входы S соответствующих триггеров подать значения записываемых разрядов исходного кода, то они зафиксируются на выходах триггеров.

Рис. 5.21. Структурная схема параллельного однофазного регистра на синхронных RS-триггерах.

Таким образом, при реализации регистров на основе RS-триггеров требуется подача разрядов исходного числа в прямом и инверсном коде, либо предварительное обнуление всех триггеров, что не всегда является удобным. В этом отношении удобны регистры на D-триггерах. В них информация может быть установлена по одному входу и без предварительной установки в нуль

Рис. 5.22. Структурная схема параллельного регистра на D-триггерах.

Последовательные регистры. Последовательный регистр предназначен для кратковременного хранения информации, но, в отличие от параллельного регистра, в нем осуществляется логическая операция сдвига кода хранимого числа на любое количество разрядов. Ввод информации в последовательный регистр осуществляется по одному последовательному каналу V. Сдвиг кода числа происходит с помощью синхронизирующих импульсов С, в результате подачи которых осуществляется сдвиг всех разрядов кода числа со входа к выходу или наоборот. Как и в случае параллельных регистров, последовательный регистр может быть синтезирован на базе триггеров RS-типа (JK-типа), но наиболее удобным для этих целей является использование D-триггеров. (рис. 5.23). Из рисунка видно, что информация с первым тактирующим импульсом с входа V передается на выход первого и вход второго триггеров. С приходом второго тактирующего импульса информация из первого триггера перепишется на выход второго триггера. На выход первого триггера запишется новое значение с входа V. Таким образом, будет осуществляться сдвиг исходного кода вправо. Отсюда последовательные регистры называются еще регистрами сдвига. Информация выводится из триггера по одному выходу Q.

Рис. 5.23. Структурная схема последовательного регистра.

Для построения последовательного реверсивного регистра, в котором код числа может сдвигаться как влево, так и вправо, необходимо между триггерами регистра включить устройства управления направлением сдвига. Эти устройства в зависимости от значения управляющих сигналов «сдвиг вправо» и «сдвиг влево» должны переключать входы каждого триггера регистра либо к выходам предыдущего, либо к выходам последующего триггера (рис. 5.24). Поскольку элемент 2И-ИЛИ-НЕ, выполняющий роль коммутатора, инвертирует значения сигналов, то для подачи на входы соответствующих разрядов сдвигаемого кода в прямом виде, необходимо использовать инверсные выходы этих триггеров. Информацию на самый первый элемент 2И-ИЛИ-НЕ с входа V последовательного ввода необходимо подавать через инвертор. В практических схемах для упрощения процесса управления режимами направления сдвига вместо двух сигналов «сдвиг вправо» и «сдвиг влево», используется только один из этих сигналов. Второй сигнал формируется через инвертор.

Рис. 5.24. Структурная схема последовательного реверсивного регистра.

Последовательные регистры находят ограниченное применение. Широкое распространение получили последовательно-параллельные регистры. На их базе строятся преобразователи кодов из последовательного в параллельный и из параллельного в последовательный. Для реализации параллельного вывода информации в последовательном регистре достаточно использовать выходы Qi всех триггеров. Чтобы реализовать ввод информации как в последовательном, так и в параллельном виде, можно использовать D-триггеры с асинхронной установкой в нуль или единицу. Пример такой структуры приведен на рис. 5.25.

Рис. 5.25. Структурная схема последовательно-параллельного регистра.

Как и в последовательном регистре, ввод информации в последовательном коде осуществляется по входу V. Для тактирования сдвига синхровходы всех триггеров объединены. При этом, для возможности введения кода числа в параллельном виде используются элементы И-НЕ ЛЭ1 i и ЛЭ2 i в своих разрядах. Элемент ЛЭ1 i осуществляет функцию стробирования и инвертирования разряда Di при единичном уровне управляющего сигнала «параллельная запись». В результате на вход S установки в единицу триггера Т i проходит инверсное значение разряда параллельного кода числа только в том случае, если сигнал разрешения на линии «параллельная запись» имеет единичное значение. Элемент ЛЭ2 i выполняет функцию инвертирования сигнала с элемента ЛЭ1 i и передачи его на вход R сброса триггера Т i также по активному уровню сигнала разрешения параллельной записи. В результате парафазный код всех разрядов параллельного кода проходит на соответствующий триггер только при активном уровне сигнала разрешения параллельной записи. Поскольку элементы ЛЭ i имеют инверсные выходы, то триггеры Т i должны иметь инверсные входы R и S.

Если выход последнего триггера соединить с входом первого, то получится кольцевой регистр сдвига. Записанная в его разряды информация под воздействием сдвигающих импульсов будет циркулировать по замкнутому кольцу. Кольцевой регистр иначе называется кольцевым счетчиком. Его коэффициент пересчета равен числу разрядов n последовательного кода. Единица, записанная в один из разрядов, периодически будет появляется в нем после того, как будут поданы n сдвигающих импульсов. В условном графическом обозначении функция регистра задается символами «RG», а в маркировке микросхем – символами «ИР».






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных