Главная | Случайная
Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Проводимости при гармоническом воздействии




Отношение активной составляющей тока к напряжению, называется активной проводимостью:

Отношение индуктивной (емкостной) составляющей тока к напряжению, называется реактивной проводимостью:

Отношение тока ветви (общего тока) к напряжению называется полной проводимостью:

 

Разделим все стороны диаграммы токов на напряжение, получим диаграмму проводимостей:

 

Если параллельно соединяется по одному элементу, то формулы проводимостей упрощаются. Проводимость будет обратно пропорциональна сопротивлению:

 

Чтобы записать входное сопротивление цепи в комплексной (символической) форме, используют обычную формулу сопротивления при параллельном соединении, только вместо сопротивлений подставляют их комплексные выражения:

В числитель подставляем в показательной форме, в знаменатель — в алгебраической.


Вопрос 37. Представление напряжения и тока в комплексной форме. Отрицательные углы. Законы Ома и Кирхгофа в комплексной форме. Выражение мощности в комплексной форме. Цепь с произвольным числом резистивных и реактивных элементов. Построение векторной диаграммы.

Выражение тока и напряжения в комплексной (символической) форме

 

 

 

 

Рассмотрим перевод комплексных чисел из алгебраической формы в показательную.

Дано:

Определить:

Если мнимая часть отрицательна, то угол также отрицателен.

 

Рассмотрим перевод обратно:

Дано:

Определить:

Если угол отрицателен, то мнимая часть будет отрицательной.

 

Примеры:

 

Выражают ток и напряжение в показательной форме. Модуль равен максимальному или действующему значению, аргумент равен начальной фазе:

 

Например:

 




Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2019 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных