Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Индуктивность– индуктивные датчики. 2 страница




Проекционные методы работают по принципу «один ракурс — один снимок». При этом никакие математические преобразования для получения изображения не проводятся, имеют место только методы пост-обработки (регулировка яркости-контраста, сегментация и т. д.). При увеличении количества ракурсов и, соответственно, количества снимков (многоракурсная съёмка), можно применить томографические алгоритмы реконструкции и получить уже не теневые, а томографические изображения.

Таким образом, иерархию усложнения проекционных методов можно представить следующим образом:

один ракурс — одно теневое изображение (двумерная проекция);

множество ракурсов — набор теневых изображений;

множество ракурсов плюс математическая обработка — трёхмерная томограмма (набор томографических изображений) — трёхмерное распределение некоторой физической характеристики.

Томографические методы

Томография (греч. τομη — сечение) — метод неразрушающего послойного исследования внутренней структуры объекта посредством его многократного просвечивания в различных пересекающихся направлениях.

Томография - методика рентгенологического исследования, с помощью которого можно производить снимок слоя, лежащего на определённой глубине исследуемого объекта. Получение послойного снимка основано на перемещении двух из трёх компонентов (рентгеновская трубка, рентгеновская плёнка, объект исследования). Преимущественное распространение получила методика, при которой исследуемый объект неподвижен, а рентгеновская трубка и кассета с плёнкой согласованно перемещаются в противоположных направлениях. При синхронном движении трубки и кассеты только необходимый слой получается четким на пленке, потому что только его вклад в общую тень остаётся неподвижным относительно плёнки, всё остальное — смазывается, почти не мешая проводить анализ полученного изображения. В настоящее время доля последнего метода в исследованиях стремительно уменьшается, в связи со своей относительно малой информативностью и высокой дозовой нагрузкой, вследствие чего такое определение морально устарело и данный метод получил название классическая томография или линейная томография.

Главное отличие методов эхозондирования от томографии состоит в том, что при эхозондировании визуализируются не области, а границы (обычно показателя преломления)

Вычислительная томография — область математики, занимающаяся разработкой математических методов и алгоритмов восстановления внутренней структуры объекта по проекционным данным.

Компьютерная томография — в широком смысле, синоним термина томография (так как все современные томографические методы реализуются с помощью компьютерной техники); в узком смысле (в котором употребляется значительно чаще), синоним термина рентгеновская компьютерная томография, так как именно этот метод положил начало современной томографии.

Анатомическая томография — основана на получении срезов тканей человека с их последующей фиксацией с помощью химических веществ и регистрация их на фотоплёнку. Классическими примерами анатомической томографии являются изображения гистологическихпрепаратов. Терминологически, в настоящее время, данные методы не относят к томографии, в силу их разрушающего характера.

Начало современной томографии было положено в 1917 г., когда австрийскийматематикИ. Радон предложил способ обращения интегрального преобразования, впоследствии получившего его имя (преобразование Радона). Однако работа Радона в своё время не попала в поле зрение исследователей и была незаслуженно забыта.

В 1963 г. американскийфизикА. Кормак повторно (но отличным от Радона способом) решил задачу томографического восстановления, а в 1969 году английский инженер-физик Г. Хаунсфилд сконструировал «ЭМИ-сканер» (EMI-scanner)

первый компьютерный рентгеновский томограф, чьи клинические испытания прошли в 1972 году. А в 2003 за изобретение метода магнитно-резонансной томографии Нобелевскую премию по физиологии и медицине получили Питер Мэнсфилд и Пол Лотербур.

Эхозондирование

В ряде случаев, некоторые методы эхозондирования (например, обычное, ошибочно относят к томографии, что терминологически не верно. Несмотря на то, что в ультразвуковом исследовании также получают изображение некоторого сечения (томоса) — метод его получения не является томографическим: отсутствует многоракурсная съёмка в пересекающихся направлениях и, самое главное, отсутствует решение обратной томографической задачи.

Для получения ультразвукового снимка нет никакой необходимости в особой математической предобработке. Ультразвуковой преобразователь (на самом деле это набор небольших отдельных ультразвуковых преобразователей) посылает ультразвуковую волну (ультразвуковой веерный пучок), которая частично отражается от границ неоднородностей и возвращается к ультразвуковому преобразователю, где и регистрируется. Принцип же получения снимка в упрощённой форме можно представить следующим образом: по одной оси откладываются номера отдельных преобразователей (направление), вторая ось — временная задержка отклика (расстояние), яркость — интенсивность отклика.

 

Билет 14

1). Виды рентгеновского излучения.

Исходя из принципа возникновения излучения различают тормозное и характеристическое излучение.

Тормозное рентгеновское излучение.Электроны, испускаемые катодом, разгоняются электрическим полем, приложенным между катодом и антикатодом, приобретая у антикатода кинетическую энергию Е = еU, где е – заряд электрона 1,6 10-19 Кл и U – напряжение между катодом и антикатодом. На поверхности вещества антикатода (зеркала) движение электрона резко тормозится электрическим полем его атомов и избыток энергии частью превращается в тепловую, а частью излучается в виде электромагнитной волны рентгеновского диапазона: Е = еU = Q + hν, где Q – тепловая энергия, h – постоянная Планка 6,68 10-34 Дж с, ν – частота электромагнитного излучения. Появление электромагнитного излучения можно объяснить следующим образом: направленное движение электронов от катода к антикатоду представляет собой электрический ток. Вокруг электрического тока возникает магнитное поле

Характеристическое рентгеновское излучение.Кроме тормозного, есть характеристическое излучение, которое имеет линейчатый спектр.Характеристическое излучение возникает в результате возбуждения атомов электронами высоких энергий, которые проникают вглубь атома и переводят близкие к ядру электроны на более высокие энергетические уровни. Последующие переходы удаленных от ядра электронов на освобождающийся уровень сопровождается испусканием квантов, длины волн которых лежат в рентгеновской области и служат характеристикой материала анода.Как правило, характеристическое излучение возникает при переходах электронов на внутренние оболочки (k, l, m) атомов с высоким порядковым номером. В веществе антикатода, подвергшемуся сильному внешнему воздействию, т.е. бомбардировке быстрыми электронами, электрон с оболочки К удаляется со своей орбиты и переходит на достаточно удаленный уровень – N (рис. 6). На освободившееся место уровня K может перейти электрон с любого другого, более высокого энергетического уровня, например, с L или М, или N уровня.

2) Исследование микроструктур в поляризационном свете

В основе приборов, используемых для исследований в поляризованном свете, лежит система из поляризатора и анализатора, расположенных вдоль направления световых лучей, между которыми помещается исследуемый объект. Анализатор устроен подобно поляризатору, но приспособлен для вращения вокруг продольной оси системы. Если плоскости поляризатора П и анализатора А совпадают, то свет полностью проходит через анализатор и образует на экране Э светлое пятно (рис. 5, а; поляризатор П и анализатор А - поляроидные пленки, плоскости колебаний на которых обозначены стрелками).

При повороте анализатора яркость пятна на экране убывает. Убывание интенсивности I света, прошедшего через анализатор, происходит по соотношению (закон Малюсa) IА = IП cos2a, где IП и IА - интенсивность света, прошедшего через поляризатор и анализатор соответственно, и a - угол поворота плоскости анализатора (рис. 5, б). При взаимно перпендикулярном расположении плоскостей поляризатора и анализатора свет полностью гасится (рис. 5, в) анализатором. Таким образом, за один полный оборот (на 360°) анализатора экран дважды полностью освещается и дважды полностью затемняется.

Поляризованный свет применяется при исследовании оптически анизотропных элементов различных структур, в частности тканей организма. Во многих случаях при этом, возможно, установить расположение и строение элементов структуры, которые не выявляются при микроскопировании в естественном свете.

 

Рисунок 5. Варианты взаиморасположения поляризатора и анализатора и интенсивность прошедшего света иллюстрируют закон Малюса.

Оптическая анизотропия наблюдается, например, у мышечных, соединительно-тканных (коллагеновых) и нервных волокон. Само название скелетных мышц - поперечнополосатые - связано с тем, что при микроскопировании в естественном свете волокно наблюдается состоящим из чередующихся более темных А и более светлых I участков, это и придает ему поперечную исчерченность. Исследование мышечного волокна в поляризованном свете обнаруживает, что более темные участки являются анизотропными, тогда как более светлые - изотропными, что и является причиной их различия в естественном свете.

Коллагеновые волокна целиком анизотропны, оптическая ось их расположена вдоль оси волокна. Мицеллы в мякотной оболочке нейрофибрилл также анизотропны, но оптические оси их расположены в радиальных направлениях.

Для гистологического исследования этих структур применяется поляризационный микроскоп. Это биологический микроскоп, снабженный двумя призмами Николя: одна расположена перед конденсатором и служит поляризатором, вторая - в тубусе между объективом и окуляром - служит анализатором. Предметный столик вращается вокруг продольной оси микроскопа на 360°.

Если в поляризационный микроскоп, установленный на полное затемнение поля зрения («скрещенные николи»), поместить препарат с изотропной структурой, но поле зрения останется темным. В случае, когда между поляризатором и анализатором помещен препарат с анизотропными структурами, свет, прошедший поляризатор, будет в них вновь двояко преломляться. В связи с этим он не гасится полностью анализатором, и соответствующие структуры выступают светлыми на общем темном фоне поля зрения.

3).Биофизические особенности аорты.Распространение пульсовой волны по стенке артерий. Венный пульс.

Под действием крови, выбрасывае­мой в систолу левым желудочком, происходит растяжение аортальной стенки, об­ладающей упругими свойствами. При коле­баниях давления крови в сосуде изменяется главным образом его просвет, а длина остается практически неизменной. При рентгенографии аорты обнару­жили, что в систолу ее диаметр увеличивается примерно на 10% относительно сво­его диастолического значения. Коэффициент упругости определяется преиму­щественно эластигескими волокнами, хотя в аортальной стенке присутствуют наряду с ними коллагеновые волокна.

На гистологических препаратах аорты коллагеновые волокна имеют волнис­тую (гофрированную) форму, обусловленную их свободной (рыхлой) укладкой среди других структур, пребывающих в недеформированном состоянии. Под дей­ствием повышения кровяного давления в физиологических пределах коллагеновые волокна только распрямляются, но не растягиваются. Благодаря коллагеновым волокнам стенки артерий здорового человека не разрушаются даже при 5—10-кратном повышении кровяного давления. Следовательно, коллагеновые волокна обес­печивают артериальной стенке не упругость, а жесткость и прочность.

Напротив, эластические волокна аортальной стенки растягиваются при обыч­ных колебаниях кровяного давления во время систолы сердца. В эластических волокнах возникает сила упругости в соответствии с законом Гука. Коэффициентом пропорциональ­ности между Fynpи величиной растяжения стенки аорты при повышении КД слу­жит модуль Юнга эластических волокон, равный (0,4—1,0) • 106Па.

Эластическим волокнам аорты в физиологических условиях свойственна экспоненциальная за­висимость силы упругости от степени растяжения. При более сильном растяжении устанавливается линейная зависимость, а чрезмерно растянутые эластические волокна разрываются. Упругость аортальной стенки обуславливает возникновение и распространение пульсовой волны по стенке артерий. Пульсовая волна распространяется от места своего возникновения до капилляров, где затухает.

Общую характеристику пульсовой волны врач получает при пальпации арте­рии, но более полные сведения дает регистрация кривой артериального пульса, ко­торая называется сфигмограммой

Записав сфигмограммы в двух точ­ках артериальной магистрали и измерив сдвиг фазы между ними, можно опреде­лить скорость пульсовой волны в стенках исследуемых артерий. Скорость пульсовой волны в аорте составляет 4—6, а в лучевой артерии 8—12 м/с. При склеротических изменениях артерий повышается их жесткость. С возрастом скорость пульсовой волны увеличивается. Чем выше упругость артериальной стенки, тем больше амплитуда колебаний кровяного давления в аорте и крупных артериях. Высокоамплитудные колебания кровяного давления создают дополнительную нагрузку на сердце и усиливают деформацию сосудистых стенок.

Более сложным является венный пульс — колебания стенок венозных сосудов. Он возникает в венах, впадающих в предсердия, и распространяется по направлению к капиллярам. Амплитуда венного пульса ниже, чем артериального, что обусловлено прежде всего меньшей упругостью оболочек венозных сосудов. Кривая венного пульса называется флебограммой. Следовательно, от сердца к капиллярному руслу движутся навстречу друг другу две пульсовые волны (артериальная и

Билет15

1). Процессы, происходящие при взаимодействие рентгеновского излучения с веществом

Регистрация и использование рентгеновского излучения, а также воздействие его на биологические объекты определяются первичными процессами взаимодействия рентгеновского фотона с электро-нами атомов и молекул вещества.

В зависимости от соотношения энергии hν фотона и энергии ионизации Еи имеют место три главных процесса взаимодействия рентгеновского излучения с веществом: когерентное (классическое) рассеяние, фотоэффект, некогерентное рассеяние (Комптон эффект).Когерентное рассеяние происходит, если энергия падающего рентгеновского фотона hν1 (hc/λ1) меньше, чем энергия ионизации вещества (работы выхода электрона из вещества) hν1< Еи. В этом случае фотон рентгеновского излучения, встретившись с валентным электроном вещества, отдает ему свою энергию и возбуждает его, в результате электрон переходит на более удаленную орбиту, где не может быть дольше чем 10-10 секунд, возвращается в основную орбиту и излучает свою избыточную энергию в виде электромагнитного излучения рентгеновского диапазона. Этот фотон электромагнитного излучения будет иметь энергию hν2 (hc/λ2), равную поглощенной электроном, но может иметь другое направление, поэтому называется рассеянием. А когерентным называется потому, что hν2 = hν1 или hc/λ2 = hc/λ1 и ν2 = ν1 или λ2 = λ1, частота (или длина волны) первичного и вторичного излучении равны. Таким образом при когерентном рассеянии в веществе изменения не происходят, излучение изменяет только направление распространения.Фотоэффект происходит, если энергия падающего рентгеновского фотона hν1 (hc/λ1) больше, чем энергия ионизации вещества (работы выхода электрона из вещества) hν1 ≥ Еи.Фотон рентгеновского излучения взаимодействует с валентным электроном вещества, отдает ему свою энергию. Электрон получив достаточную энергию оставляет вещество, т.е. часть полученной энергии затрачивает на совершение работы выхода из вещества, а оставшаяся часть энергии преобразуется в кинетическую энергию свободного электрона hν1 = Еи+ mυ2/2. Таким образом в результате фотоэффекта вещество превращается в положительный ион, появляется свободный электрон, а фотон исчезает.Некогерентное рассеяние происходит, если hν1 >> Еи. В этом случае часть энергии фотона, сообщенная электрону, идет на совершения работы выхода электроном из вещества Еи, другая часть на кинетическую энергию mυ2/2 свободного электрона, третья часть излучается в виде вторичного излучения hν2, которое рассеивается по всевозможным направлениям.

2) Вращение плоскости поляризации поперечной волны — физическое явление, заключающееся в повороте поляризационного вектора линейно-поляризованной поперечной волны вокруг её волнового вектора при прохождении волны через анизотропную среду. Волна может быть электромагнитной, акустической, гравитационнойи т. д.

Линейно-поляризованная поперечная волна может быть описана как суперпозиция двух циркулярно поляризованных волн с одинаковым волновым вектором и амплитудой. В изотропной среде проекции полевого вектора этих двух волн на плоскость поляризации колеблются синфазно, их сумма равна полевому вектору суммарной линейно-поляризованной волны. Если фазовая скорость циркулярно поляризованных волн в среде различна (циркулярная анизотропия среды, см. такжеДвойное лучепреломление), то одна из волн отстаёт от другой, что приводит к появлению разности фаз между колебаниями указанных проекций на выбранную плоскость. Эта разность фаз изменяется при распространении волны (в однородной среде — линейно растёт). Если повернуть плоскость поляризации вокруг волнового вектора на угол, равный половине разности фаз, то колебания проекций полевых векторов на неё будут вновь синфазны — повёрнутая плоскость будет плоскостью поляризации в данный момент.

 

Вращение плоскости поляризации электромагнитной волны в плазме при наложении магнитного поля (эффект Фарадея).

Таким образом, непосредственной причиной поворота плоскости поляризации является набег разности фаз между циркулярно поляризованными составляющими линейно-поляризованной волны при её распространении в циркулярно-анизотропной среде. Для электромагнитных колебаний такая среда называется оптически активной (или гиротропной), для упругих поперечных волн — акустически активной. Известен также поворот плоскости поляризации при отражении от анизотропной среды (см., например, магнитооптический эффект Керра).

Циркулярная анизотропия среды (и, соответственно, поворот плоскости поляризации распространяющейся в ней волны) может зависеть от наложенных на среду внешних полей (электрического, магнитного) и от механических напряжений (см. Фотоупругость). Кроме того, степень анизотропии и набег фаз, вообще говоря, могут зависеть от длины волны (дисперсия). Угол поворота плоскости поляризации линейно зависит при прочих равных условиях от длины пробега волны в активной среде. Оптически активная среда, состоящая из смеси активных и неактивных молекул, поворачивает плоскость поляризации пропорционально концентрацииоптически активного вещества, на чём основан поляриметрический метод измерения концентрации таких веществ в растворах; коэффициент пропорциональности, связывающий поворот плоскости поляризации с длиной луча и концентрацией вещества, называется удельным вращением данного вещества.

В случае акустических колебаний поворот плоскости поляризации наблюдается лишь для поперечных упругих волн (так как для продольных волн плоскость поляризации не определена) и, следовательно, может происходить лишь в твёрдых телах, но не в жидкостях или газах.

Общая теория относительности предсказывает вращение плоскости поляризации световой волны в пустоте при распространении световой волны в пространстве с некоторыми типами метрики вследствие параллельного переноса вектора поляризации по нулевой геодезической — траектории светового луча (гравитационный эффект Фарадея, или эффект Рытова — Скротского)[1].

3).Компьютерный томограф.

Компьютерный томограф, если говорить упрощенно – это комбинация рентгеновской установки и компьютера. Рентгеновская установка делает снимки больного под разными углами, (срезы), которые обрабатываются и суммируются компьютером – получается изображение, позволяющее докторам «заглянуть» внутрь тела больного.

Компьютерную томографию делают в настоящее время все чаще и чаще. Этот метод неинвазивный (не требует оперативного вмешательства), безопасный и применяется при многих заболеваниях. КТ идеально подходит для диагностирования костных повреждений и травм. Кроме того, на КТ хорошо видно свежее кровотечение, поэтому КТ применяют при исследованиях больных с травмами головы, грудной клетки и брюшной и тазовых полостей, а также инсультов в ранней (!) стадии. Использование контрастного вещества позволяет получить качественное изображение сосудов, почек и кишечника.

С помощью компьютерной томографии можно исследовать практически любой орган – от мозга до костей. Часто компьютерную томографию используют для уточнения патологий, выявленных другими методами. Например, при гайморите, часто сначала делают рентгенографию придаточных пазух носа, а затем для уточнения диагноза – проводят компьютерную томографию. В отличие от обычного рентгена, на котором лучше всего видны кости и воздухоносные структуры (легкие), на КТ отлично видны и мягкие ткани (мозг, печень, и т.д.), это дает возможность диагностировать болезни на ранних стадиях, например, обнаружить опухоль пока она еще небольших размеров и поддается хирургическому лечению.

С появлением спиральных и мультиспиральных томографов компьютерную томографию сосудов применяют в настоящее время все чаще. Как правило, для этого требуется внутривенное введение контрастного вещества.

Компьютерная томография головного мозга и черепа позволяет врачу видеть опухоли, участки инсульта, гематомы, патологии кровеносных сосудов и переломы. Компьютерная томография шеи применяется для обнаружения опухолей и исследования причин увеличения шейных лимфоузлов. Компьютерная томография грудной клетки чаще всего назначают для уточнения изменений легких, выявленных при флюорографии или рентгенографии. Компьютерная томография брюшной полости и таза часто применяется при травме живота, для точной диагностики заподозренной патологии перед операцией. Компьютерная томография позвоночника помогает выявить грыжи диска, сужение канала спинного мозга. Часто также применяется при травмах. Компьютерная томография применяется также при ишемической болезни сердца, что позволяет избежать инвазивных (хирургических) методов диагностики.

Диагностический медицинский рентген аппарат LAMBDA используется для маммографических исследований внутренней структуры молочных желез.Передвижной рентгенохирургический аппарат TAU9 с С-образной дугой используется в операционных. Стационарный рентген аппарат ALFA 30 применяется для медицинской диагностики.

 

Билет16

1). Закон ослабление рентгеновского излученияВ результате множества процессов, происходящих при взаимодействия рентгеновского излучения с веществом поток излучения ослабляется. Это ослабление можно описать законом Бугера: Ф = Фое-μd, где Ф - поток излучения, прошедшее через вещество, Фо - поток излучения, падающее на вещество, μ – линейный коэффициент ослабления, d – толщина слоя вещества.

Одним из показателей ослабления рентгеновского излучения с веществом является толщина слоя половинного поглощения, которое можно определить из условия, что прошедший через вещество поток излучения равен половине падающего: Ф = Фо/2. Если подставить сюда математическое выражение закон Бугера получится: Фо/2 =Фое-μd ½ = е-μdln1 – ln2 = -μd1/2 d1/2 = ln2/μ = 0,693/ μ, т.е. толщина слоя половинного поглощения величина обратная линейному коэффициенту ослабления.Поток рентгеновского излучения ослабляется пропорционально числу атомов вещества, через которое этот поток проходит. Чем больше атомов в единице длины вещества, соответственно в единице объема, тем сильнее ослабляется поток рентгеновского излучения. Отсюда следует, что линейный коэффициент ослабления зависит от плотности вещества ρμ = ρμm, где μm – массовый коэффициент ослабления, который зависит от природы вещества и от длины волны излучения..

2) Методы световой микроскопии

Методы световой микроскопии (освещения и наблюдения). Методы микроскопии выбираются (и обеспечиваются конструктивно) в зависимости от характера и свойств изучаемых объектов, так как последние, как отмечалось выше, влияют на контрастность изображения.

Метод светлого поля и его разновидности

Метод светлого поля в проходящем светеприменяется при изучении прозрачных препаратов с включенными в них абсорбирующими (поглощающими свет) частицами и деталями. Это могут быть, например, тонкие окрашенные срезы животных и растительных тканей, тонкие шлифы минералов и т. д. В отсутствие препарата пучок света из конденсора, проходя через объектив, даёт вблизи фокальной плоскости окуляра равномерно освещенное поле. При наличии в препарате абсорбирующего элемента происходит частичное поглощение и частичное рассеивание падающего на него света, что и обусловливает появление изображения. Возможно применение метода и при наблюдении неабсорбирующих объектов, но лишь в том случае, если они рассеивают освещающий пучок настолько сильно, что значительная часть его не попадает в объектив.

Метод косого освещения- разновидность предыдущего метода. Отличие между ними состоит в том, что свет на объект направляют под большим углом к направлению наблюдения. Иногда это помогает выявить «рельефность» объекта за счёт образования теней.

Метод светлого поля в отражённом светеприменяется при исследовании непрозрачных отражающих свет объектов, например шлифов металлов или руд. Освещение препарата (от осветителя и полупрозрачного зеркала) производится сверху, через объектив, который одновременно играет и роль конденсора. В изображении, создаваемом в плоскости объективом совместно с тубусной линзой, структура препарата видна из-за различия в отражающей способности её элементов; на светлом поле выделяются также неоднородности, рассеивающие падающий на них свет.

Метод темного поля и его разновидности

Метод тёмного поля в проходящем свете(Dark-field microscopy)используется для получения изображений прозрачных неабсорбирующих объектов, которые не могут быть видны, если применить метод светлого поля. Зачастую это биологические объекты. Свет от осветителя и зеркала направляется на препарат конденсором специальной конструкции — т. н. конденсором тёмного поля. По выходе из конденсора основная часть лучей света, не изменившая своего направления при прохождении через прозрачный препарат, образует пучок в виде полого конуса и не попадает в объектив (который находится внутри этого конуса). Изображение в микроскопе формируется при помощи лишь небольшой части лучей, рассеянных микрочастицами находящегося на предметном стекле препарата внутрь конуса и прошедшими через объектив. Темнопольная микроскопия основана на эффекте Тиндаля(Tyndall effect), известным примером которого служит обнаружение пылинок в воздухе при освещении их узким лучом солнечного света. В поле зрения на тёмном фоне видны светлые изображения элементов структуры препарата, отличающихся от окружающей среды показателем преломления. У крупных частиц видны только светлые края, рассеивающие лучи света. Используя этот метод, нельзя определить по виду изображения, прозрачны частицы или непрозрачны, больший или меньший показатель преломления они имеют по сравнению с окружающей средой.

Проведение темнопольного исследования

Предметные стекла должны быть не толще 1,1-1,2 мм, покровные 0,17 мм, без царапин и загрязнений. При приготовлении препарата следует избегать наличия пузырьков и крупных частиц (эти дефекты будут видны ярко святящимися и не позволят наблюдать препарат). Для темнопольной применяют более мощные осветители и максимальный накал лампы.

Настройка темнопольного освещения в основном заключается в следующем:

Устанавливают свет по Келеру;

Заменяют светлопольный конденсор темнопольным;

На верхнюю линзу конденсора наносят иммерсионное масло или дистиллированную воду;

Поднимают конденсор до соприкосновения с нижней поверхностью предметного стекла;

Объектив малого увеличения фокусируют на препарат;

С помощью центрировочных винтов переводят в центр поля зрения светлое пятно (иногда имеющее затемненный центральный участок);

Поднимая и опуская конденсор, добиваются исчезновения затемненного центрального участка и получения равномерно освещенного светлого пятна.

Если этого сделать не удается, то надо проверить толщину предметного стекла (обычно такое явление наблюдается при использовании слишком толстых предметных стекол - конус света фокусируется в толще стекла).

После правильной настройки света устанавливают объектив нужного увеличения и исследуют препарат.

В основе метода ультрамикроскопиилежит тот же принцип – препараты в ультрамикроскопах освещаются перпендикулярно направлению наблюдения. При этом методе можно обнаружить (но не «наблюдать» в буквальном смысле слова) чрезвычайно мелкие частицы, размеры которых лежат далеко за пределами разрешающей способности наиболее сильных микроскопов. При помощи иммерсионных ультрамикроскопов удаётся зарегистрировать присутствие в препарате частиц с×частиц размером до 2×10 в -9 степени м. Но форму и точные размеры таких помощью этого метода определить невозможно. Их изображения представляются наблюдателю в виде дифракционных пятен, размеры которых зависят не от размеров и формы самих частиц, а от апертуры объектива и увеличения микроскопа. Так как подобные частицы рассеивают очень мало света, то для их освещения требуются чрезвычайно сильные источники света, например угольная электрическая дуга. Ультрамикроскопы применяются в основном в коллоидной химии.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных