ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Кривая толерантностиНапример, температура является важнейшим лимитирующим (ограничивающим) фактором. Для любого вида пределами толерантности служат максимальная и минимальная летальные температуры, за их пределами вид погибает от холода или жары. Живые организмы могут жить при температуре от 0 до 50С за некоторым исключением. При оптимальных значениях температуры (оптимальный интервал) организмы чувствуют себя комфортно, размножаются, наблюдается рост численности популяции. При возрастании жары в пределах верхней границы стойкости и похолодании в пределах нижней границы стойкости организмы попадают в зону смерти и погибают. Данный пример иллюстрирует общий закон биологической стойкости, который применим к важным лимитирующим факторам. Оптимальный интервал характеризует стойкость организмов (толерантность к этому фактору) или экологическую валентность.
В середине ХIХ в. Ю. Либихом был установлен закон минимума: урожай зависит от фактора, находящегося в минимуме. Например, если фосфор содержится в почве лишь в минимальных количествах, то это снижает урожай. Но оказалось, что если это же вещество находится в избытке, это также снижает урожай. Следовательно, закон толерантности В.Шельфорда (1913) гласит: ограничивающим фактором жизни организма может быть как минимум, так и максимум экологического воздействия, диапазон между которыми определяет величину выносливости организма к этому фактору. Этот закон справедлив и в отношении информации. Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы в ходе эволюции у организмов выработались адаптации к их воздействию.
Адаптация – приспособление организма к среде обитания. Способность к адаптации – одно из основных свойств жизни, так как обеспечивает саму возможность ее существования, возможность организмов выживать и размножаться в конкретных условиях среды. Она сформировалась под воздействием трех основных факторов – изменчивости, наследственности и естественного отбора. Адаптация проявляется на разных уровнях: от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экологических систем. Основные механизмы адаптации на уровне организма: 1) биохимические – проявляются во внутриклеточных процессах, например, изменение активности работы клеток или синтеза ферментов, гормонов; 2) физиологические (усиление потоотделения при повышении температуры у ряда видов); 3) морфологические – особенности строения и формы тела, связанные с образом жизни, средой обитания; 4) поведенческие – поиск животными благоприятных мест обитания, создание нор, гнезд, миграция и др.; 5) онтогенетические – ускорение или замедление индивидуального развития, способствующее выживанию при изменении условий.
Биоценоз - это динамически устойчивое сообщество растений, животных и микроорганизмов, находящихся в постоянном взаимодействии между собой и компонентами неживой природы. Термин "биоценоз" предложен в 1877г. К. Мебиусом. Каждый биоценоз состоит из определенной совокупности живых организмов, относящихся к разным видам. В его состав входят: фитоценоз – совокупность растений на определенной территории; зооценоз - совокупность животных на определенной территории; микробиоценоз – совокупность микроорганизмов, населяющих почву; микоценоз – совокупность грибов. Однородное природное жизненное пространство, занимаемое биоценозом, называется биотопом (экотопом). Простым показателем разнообразия биоценоза является общее число видов, или видовое богатство. Если какой-либо вид организма количественно преобладает в сообществе, то такой вид называется доминантой, или доминирующим видом. Распределение видов, составляющих биоценоз, в пространстве называется пространственной структурой биоценоза. Различают вертикальную (образованную ярусами: первый - древесный ярус, второй – подпологовый ярус, травяно-кустарниковый ярус, мохово-лишайниковый ярус) и горизонтальную структуру биоценоза (образующую различного рода узорчатость, пятнистость вида и т.д.). Компоненты, образующие биоценоз, взаимосвязаны. Изменения, которые касаются только одного вида, могут сказаться на всем биоценозе и даже вызвать его распад. Биоценоз связан с факторами неживой природы (абиотическими), при этом образуется биогеоценоз, представляющий исторически сложившееся единство биоценоза и неживой среды обитания организмов на определенной территории.
Биогеоценоз - устойчивая, саморегулирующаяся, динамическая, взаимосвязанная, уравновешенная система живых компонентов (биотоп) и компонентов неживой природы (экотоп).
Термин «биогеоценоз» ввел В.Н. Сукачев в 1940г.
Основные показатели характеристики биогеоценозов :
1. Видовое разнообразие - число видов растений и животных, образующих данный биогеоценоз. 2. Плотность популяции - количество особей данного вида на единицу площади. 3. Биомасса - общее количество органического вещества, всей совокупности особей с заключенной в ней энергией. Биомассу обычно выражают в единицах массы в перерасчете на сухое вещество на единицу площади или объема. Чем выше эти показатели биогеоценоза, тем он масштабнее и стабильнее. В 1935 г. английский ботаник А.Тенсли ввел в биологию термин «экосистема». Он считал, что экосистемы «с точки зрения эколога представляют собой основные природные единицы на поверхности земли», в которые входит «не только комплекс организмов, но и весь комплекс физических факторов, образующих то, что мы называем средой биома, - факторы местообитания в самом широком смысле». Экосистема представляет собой единство живых организмов и среды их обитания с потоками энергии и биологическим круговоротом веществ. Экосистема обладает признаком безразмерности, ей не свойственны территориальные ограничения. Размер экосистем не может быть выражен в физических единицах измерения (площадь, длина, объем), поэтому под экосистемой обычно понимают совокупность компонентов биотической (живые организмы) и абиотической среды с полным биотическим круговоротом. Экосистемами являются такие природные образования, как океан, море, озеро, луг, болото. Экосистемой может быть кочка на болоте и гниющее дерево в лесу с живущими на них организмами, муравейник с муравьями. Самой большой экосистемой является планета Земля.
По масштабам экосистемы можно разделить на: микроэкосистема - лесная подстилка, пень, кора дерева; мезоэкосистема (экосистема среднего масштаба) – лес, луг, болото, степь; макроэкосистемы - море, океан, пустыня. В экологии термины «биогеоценоз» и «экосистема» чаще всего рассматриваются как синонимы. Единицей классификации экосистем является биом – природная зона или область с определенными климатическими условиями и соответствующим набором доминирующих видов растений и животных. Биомы: тундра, тайга, листопадные леса умеренной зоны, хвойные леса, степи, пустыни, болота, тропические саванны и леса, океан и др.
Для естественной экосистемы характерны три признака: 1.Совокупность живых и неживых компонентов; 2.Полный цикл круговорота веществ, начиная с создания органического вещества и заканчивая его разложением на неорганические составляющие; 3.Сохранение устойчивости в течение определенного времени.
Живыми компонентами экосистемы являются автотрофные (зеленые растения) и гетеротрофные организмы (животные, человек, грибы, бактерии); неживыми – солнечная энергия, почва, вода и др. Жизнедеятельность экосистемы и круговорот веществ в ней возможны только при условии постоянного притока энергии. Круговорота энергии в экосистеме не бывает, энергия используется только один раз. Круговорот веществ в экосистеме осуществляется живыми организмами (продуцентами, консументами и редуцентами) и называется биологическим круговоротом веществ.
Основу любого биогеоценоза (экосистемы) составляют: 1. Продуценты - ( зеленые растения, автотрофы) - производители органических веществ. 2. Консументы -(гетеротрофные животные, грибы, паразитические растения, бактерии) – потребители органики. 3. Редуценты – ( бактерии) - разрушающие мертвое органическое вещество и превращающие его в неорганическое.
Именно устойчивые (стабильные) экосистемы, в которых постоянно протекает обмен веществ, обеспечивают поддержание жизни на нашей планете. Экосистемы находятся в постоянном взаимодействии с компонентами атмосферы, гидросферы и литосферы. В них постоянно поступают энергия солнца, минеральные вещества почвы и газы атмосферы, а выделяются - теплота, кислород, диоксид углерода, продукты жизнедеятельности организмов.
Основу связей между популяциями биогеоценоза обусловливает характер питания особей и способы получения ими энергии. В биогеоценозе в результате жизнедеятельности организмов непрерывно осуществляется поток атомов из неживой природы в живую и обратно, замыкаясь в круговорот. Для круговорота веществ необходим приток энергии извне. Источником энергии служит солнце. Поток энергии имеет однонаправленный характер. Энергия излучения солнца в биогеоценозепреобразуется в различные формы: в энергию химических связей, в механическую и, наконец, во внутреннюю. Однако существуют биогеоценозы, не включающие автотрофные растения, например, экосистемы больших глубин океанов или пещер. Но во всех биогеоценозах подобного типа обязателен приток энергии извне в форме органических веществ, которые как бы заменяют энергию Солнца. Живые компоненты экосистемы связаны межвидовыми и внутривидовыми отношениями. Они связаны с неорганическими элементами среды и зависят от них. Это обеспечивает устойчивость экосистемы, способность ее к саморегуляции, восстановлению (регенерации) структуры. Взаимодействие организмов, занимающих определенное место в биологическом круговороте, называется трофической структурой биоценоза. Перенос веществ и заключенной в них энергии от автотрофов к гетеротрофам, что происходит в результате поедания одними организмами других, называется пищевой цепью (цепью питания, трофической цепью). Совокупность организмов, объединенных одним типом питания и занимающих определенное положение в пищевой цепи, носит название - «трофический уровень». Первый трофический уровень занимают автотрофы (зеленые растения) – продуценты; второй – растительноядные животные (фитофаги, консументы первого порядка); третий – хищники, питающиеся растительноядными животными (консументы второго порядка); вторичные хищники (консументы третьего порядка) и паразиты вторичных консументов образуют четвертичный трофический уровень.
Цепи питания могут быть короткими и длинными. Например: растения - травоядные животные- хищники. Длинные: водоросли - водные беспозвоночные животные - мелкие рыбы - хищные рыбы - человек. Почти всегда цепи питания начинаются растениями - автотрофами. Энергия солнца используется растениями для синтеза органических веществ, являющихся пищей для животных. Около 1% лучистой энергии Солнца, падающей на растение, превращается в потенциальную энергию химических связей синтезированных органических веществ и может быть использовано в дальнейшем гетеротрофами. Когда животное поедает растение, большая часть энергии, содержащейся в пище, расходуется на различные процессы жизнедеятельности, превращаясь при этом в тепло и рассеиваясь. Только 5-20% энергии пищи переходит во вновь построенное вещество тела животного. Если хищник поедает травоядное животное, то снова теряется большая часть заключенной в пище энергии. Вследствие таких больших потерь полезной энергии пищевые цепи не могут быть очень длинными (не более 3-5 звеньев - пищевых уровней). В 1942 году американский эколог Р.Линдеман сформулировал закон пирамиды энергии, согласно которому с одного трофического уровня на другой через пищевые цепи переходит в среднем 10% энергии, поступившей на предыдущий уровень экологической пирамиды. При передаче энергии от одного организма к другому происходит ее рассеивание. Усваивается последующим звеном в цепи питания только 10 процентов поглощенной энергии, (до 90% теряется), поэтому в каждом последующем звене цепи питания количество биомассы уменьшается. Образуется экологическая пирамида - чисел, биомасс, энергии с широким основанием и узкой вершиной. Конечное звено многоярусной цепи в несколько десятков раз меньше по массе, чем начальное звено. Трофическую структуру биоценоза и экосистемы обычно отображают графическими моделями в виде экологических пирамид, разработанных английским зоологом Ч.Элтоном (1927 г.).
Не нашли, что искали? Воспользуйтесь поиском:
|