Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






1 страница. Массасы 12 г оттегі изотермдік түрде 20 л -ден 50 л-ге дейін ұлғайса, онда энтропияның өсімшесі неге тең ?




Есеп

Массасы 12 г оттегі изотермдік түрде 20 л -ден 50 л-ге дейін ұлғайса, онда энтропияның өсімшесі неге тең?

4. Карно циклін жасайтын газ, суытқышқа Q2=14 кДж жылу береді. Цикл кезінде А=6 кДж. жұмыс істейді. Суытқыштың темпратурасын Т2=280 К деп альп, Т1 қыздырғыштың температурасын анықтаңыз.

 

№ 2 ЕМТИХАН БИЛЕТІ

1. Қатты дененің айналмалы қозғалысының кинематикасы. Бұрыштық жылдамдық. Бұрыштық үдеу. Қозғалыстың бұрыштық және сызықтық сипаттамаларының арасындағы байланыс.

Қатты дененің айналмалы қозғалысының кинематикасы. Бұрыштық жылдамдық. Бұрыштық үдеу.Қозғалыстың бұрыштық және сызықтық сипаттамаларының арасындығы байланыс.

Айналмалы қозғалысты сипаттау үшін R және φ полярлық координаттарын қолдану қолайлы, мұндағы R - радиус–полюстан (айналу центрінен) материялық нүктеге дейінгі қашықтық, ал φ – полярлық бұрыш (немесе бұрылу бұрышы).

Бұрыштық жылдамдық . Бұрыштық үдеу .

Бұрыштық жылдамдық ω векторы dφ векторы сияқты айналу осі бойымен, демек оң бұранда ережесі бойынша бағытталады. Бұрыштық үдеу ε векторы айналу осі бойымен бұрыштық жылдамдық векторының өсім-шесі жағына қарай (үдемелі айналғанда векторының бағыты векторымен бағыттас, ал баяу айналғанда - оған қарама-қарсы) бағытталады.

Бұрыштық жылдамдық пен бұрыштық үдеудің өлшеу бірліктері -рад/с және рад/ с2.

Нүктенің сызықтық жылдамдығының бұрыштық жылдамдық пен траектория радиусымен байланысы: . Бірқалыпты айналуда: , демек.

2. Вакуумдегі электростатикалық өріс үшін Остроградский-Гаусс теоремасы

Вакуумдегі электростатикалық S өрісті есептеуге Остроградский-Гаусс теоремасын қолдану

Электр өрісінің бет арқылы өтетін кернеулік векторының ағыны

, (10.1)

мұндағы – - Eвекторының элементар бетке түсірілген нормал

бағытындағы проекциясы.Бұл шама өрістің конфигурациясына ғана емес, S бетке түсірілген n нормаль бағытын таңдауына да байланысты. Тұйықталған бет үшін нормальдың оң бағыты ретінде осы бетпен қамтылған сыртқы аймаққа қарайғы бағыт алынған. Тұйықталған бет арқылы өтетін векторының ағыны осы бет ішіндегі зарядтардың алгебралық қосындысына ғана тәуелді

. (10.2)

Бұл формула вакуумдегі электростатикалық өріс үшін Гаусс теоремасын өрнектейді. Гаусс теоремасы былай тұжырымдалады: тұйықталған бет арқылы өтетін векторының ағыны осы бетпен қамтылған көлем ішіндегі зарядтардың алгебралық қосындысын электр тұрақтысына бөлгенге тең.

Есепті шығару кезінде S тұйықталған бетті көбінесе Гаусстық бет деп атайды.

Симметриялы зарядтар жүйесінің электростатикалық өрісін есептеуде Остроградский-Гаусс теоремасын қолдану ыңғайлы. Ол үшін өріс сипатын анықтап, берілген нүкте арқылы өтетін тұйықталған гаусстық бетті таңдау қажет. Остроградский-Гаусс теоремасын біркелкі зарядталған шексіз сымның, екі параллель шексіз жазықтықтың, зарядталған сфералық және цилиндрлік беттердің электростатикалық өрістерін есептеуге қолдануға болады.

Мысал ретінде көлемдік зарядпен біркелкі зарядталған, радиусы R дөңгелек цилиндрдің өрісін есептейміз. Гаусстық бет ретінде радиусы r және биіктігі болатын, осі берілген цилиндрдің осімен сәйкес келетін дөңгелек цилиндрдің бетін алу ыңғайлы.

. (10.3)

Өрістің аймағы үшін екенін ескеріп алатынымыз

(10.4)

Ал жағдай үшін

. (10.4)’

Өрістің аймағында және . (10.5)

Өріс потенциалы . (10.6)

http://studopedia.ru/1_110038_fizika-.html

Есеп.

Темір өзекше кернеулігі 1,3 кА/м біртекті магнит өрісіне орналасқан. Осы жағдай үшін темірдің магнит өтімділігін тап.

4. Қандай да бір газдың қалыпты жағдайдағы орташа квадраттық жылдамдығы 461 м/с. Осы газдың 1 грамындағы молекулалар саны неге тең?

 

 

№ 3 ЕМТИХАН БИЛЕТІ

1.Материялық нүктенің қисық сызықты қозғалысы. Қисық сызықты қозғалыс кезіндегі жылдамдық пен үдеу. Тангенциал және нормаль үдеу.

Материялық нүктенің қисық сызықты қозғалысы.Қисық сызықты қозғалыс кезіндегі жылдамдық пен үдеу. Тангенциал және нормаль үдеу.

Жазық қисық сызықты қозғалыстың жалпы жағдайы үшін үдеу векторын екі құраушы үдеулердің векторлық қосын-дысы арқылы беру қолайлы:

Мұндағы - тангенциал (немесе жанамалық) үдеу, ол жылдамдықтың модулі бойынша өзгеріс тездігін сипаттайды), яғни: .

Нормаль үдеу траекторияға оның қисықтық центріне қарай жүргізілген нормаль бойымен бағытталып, жылдамдық векторының бағыты өзгерісінің тездігін сипаттайды. Нормаль а n үдеудің шамасы шеңбер бойы- мен болатын қозғалыс жылдамдығы мен радиус шамасымен өрнектеледі .

2..Әр түрлі процестердегі идеал газдың атқарған жұмысын есептеу.

Денені тұрақты көлемде қыздырғанда барлық жылу ішкі энергияны арттыруға жұмсалады, бір кило моль үшін . P=const жылу мөлшері ішкі энергияны арттыруымен қатар дененің көлемін ұлғайтуға қажетті жұмысқа жұмсалады ,

Изохора A=0. Изобара Изотерма

Адиабаталық , , . Политропты ,

Есеп.

Көлденең қимасының ауданы 0,17 мм2 мыс сыммен 0,15 А ток жүреді. Электр өрісі тарапынан әр еркін электронға әсер ететін Ғ күшті тап.

4. Жағалау бойымен массасы 200 кг, жылдамдығы 2 м/с жүзіп келе жатқан қайық массасы 50 кг жүкті тастайды. Жүк тастағаннан кейін қайық қандай жылдамдықпен қозғалады?

 

 

№ 4 ЕМТИХАН БИЛЕТІ

1. Электростатикалық өріс. Нүктелік зарядтың өрісінің кернеулігі және потенциалы. Электр өрістерінің суперпозиция принципі.

Электростатикалық өріс электр зарядтардан пайда болып уақыт бойынша өзгермейтін өріс. Қозғалмайтын электр зарядтарының тудыратын өрісі уақыт бойынша өзгермейді және электрстатикалық өріс деп аталады.

Электр өрісінің кернеулігівекторлық шама берілген нүктедегі бірлік сыншы q сын зарядқа әсер ететін күш

Нүтелі заряд үшін өріс кернеулігі

Суперпозиция принципы:Зарядтар жүйесінің өріс кернеулігі жүйенің әрбір зарядтары жеке жеке туғызатын өріс кернеуліктерінің векторлық қосындысына тең. . Супепозиция принципі зарядтардың кез келген жүйесінің өріс кернеулігін есептеуге мүмкіндік береді.

2. Термодинамикалық параметрлер. Тепе-теңдік күй және процестер. Идеал газдың күй теңдеуі. Тепе-тең термодинамикалық процестердегі термодинамикалық диаграммалар. Идеал газдың изопроцестері. Термодинамикалық параметрлер.Тепе-теңдік күй және процестер.Идеал газдың күй теңдеуі.Идеал газдың изопроцестері.Терм. диаграммалар.(31 процестер)

Термодинамиканың параметрлері деп физикалық күйін сипаттайтын физикалық шамаларды айтады.

Денелер жүйесі немесе жай жүйе деп біз қарастырып отырған денелердің жиынтығын айтамыз. Кез келген жүйе температура, қысым, көлем және т.с.с. мәндері арқылы айырылатын әр түрлі күйде бола алады. Жүйенің күйін сипаттайтын осындай шамалар күй параметрлері деп аталады.

Жүйенің тепе-тең күйі деп жүйенің барлық параметрлері, сыртқы жағдайлар өзгермей қалған кезде жеткілікті уақыт бойы тұрақты болып қалатын белгілі мәндерін сақтайтын күйін айтамыз. Тепе-тең күйлердің үздіксіз тізбегінен құралған процесс тепе-тең процесс деп аталады. Тепе-тең күй ұғымы мен қайтымды процесс ұғымы термодинамикада үлкен рөл атқарады.

Изопроцестер: 3: Изотермиялық: Бойль Мариотт заңы T=const идеал газдың берілген массасының қысымының көлеміне көбейтіндісі PV=const T=const m=const тұрақты болып қалады.

тұрақты температурада өтетін процесс (изо-равный, термо-теплый) T=const (тұрақты темпераурада) жұйенің параметрлерінің арасындағы тәуелділікті өрнектейтін графикті айтады.

Изобаралық: Гей Люссак (изобаралық процесс үшін) P=const да идеал газ берілген массасының көлем температурада сызықты өзгереді. p=const m=const ші цельсий бойыншы газдың көлемі t шкаласы бойынша температура Тұрақты қысымда өтетін процесті изобаралық процесс деп атайды.

Изохоралық: Шарль заңы Түрақты V=const Идеал газдың берілген массасының қысымы температурадан сызықты өзгереді. Тұрақты көлем кезінде өтетін процесс.

Есеп.

Вертикаль бағытта түсіп келе жатқан массасы г шарик еденге м/с жылдамдықпен келіп соғылып, см биіктікке қайта көтерілді. Соқтығысу кезіндегі импульс өзгерісі неге тең?

4. Орам саны 50 радиусы 50 см катушка жазықтығы индукциясы 2 Тл магнит өрісімен 300 бұрыш жасайды. Катушканы қиятын магнит ағынын тап.

 

№ 5 ЕМТИХАН БИЛЕТІ 1. Механикалық жүйенің массалық центрі және оның қозғалыс заңы. Қатты дененің ілгерілемелі қозғалысының теңдеуі.

Механикалық жүйенің масса центрі және оның қозғалыс заңы.. Қатты дененің ілгерілмелі қозғалысының теңдеуі.

Механикада массаның жылдамдыққа тәуелді еместігіне байланысты жүйенің импульсын оның масса центрі импульсымен өрнектеуге болады. Материялық нүктелер жүйесінің масса центрі (немесе инерция центрі) дегеніміз орны осы жүйенің бүкіл массасы орналасқан ойша алынған С нүктесі болып табылады. Оның радиус-векторы (немесе координаттары):

мұндағы mі және rі - сәйкес і-інші материялық нүктенің мас-сасы мен радиус-векторы; n - жүйе ішіндегі материялық нүктелер-дің саны; m=∑mі - жүйенің массасы. Бұл жағдайда жүйенің импульсы: .

Масса центрінің қозғалыс заңы: жүйенің масса центрі жүйенің массасы түгелдей жинақталған материялық нүктенің қозғалысы сияқты, ал оған әсер ететін күш жүйеге әсер ететін барлық сыртқы күштердің геометриялық қосындсына тең болады. .

Қатты дененің ілгерілемелі қозғалыс ілгерілемелі қозғалыс кезінде дененің барлық нүктелерінің жылдамдықтары және сәйкес удеулері бірдей болады. Сондықтан бүкіл дененің қозғалысын бір нүктенің қозғалысымен сипаттауға болады.

2. Қайтымды және қайтымсыз термодинамикалық процестер. Термодинамиканың екінші заңы.

Қайтымды ж/е қайтымсыз терм-қ процестер. Клаузиус ж/е Томсон түжырымдамаларындағы терм-ң екінші заңы.

Қайтымды процесс кері бағытта өткізуге болатын процесті тура бағытта өткізгенде жүйе қандай күйлерден өтсе, кері бағытта сондай тізбегінен өтетін процесті айтады. Қайтымды процеске тек тепе тең процестер жатады. Қайтымды процесте жүйені қоршаған денелерде ешқандай өзгеріс болмайды.

Қайтымсыз процестер өздігінен бір бағытта өтетін процес. Нақты процестер қайтымсыз процестер болады. Олар мейлінше баяу өте отырып, қайтымды процестерге тек жуықтай алады. Қайтымды процеске мысал ретінде вакумдегі абсолют серпімді серіппеге ілінген дененің өлшейтің тербелісің алуға болады. Кедергісі бар ортада өтетін процестердің барлығы қайтымды процестер. Қайтымсыз процестерге температуралары әр түрлі денелердің бір біріне жылу алмасу салдарынан температуралары тенелу процесі жатады, себебі жылу ыссы денеден салқынға беріледі, керісінше болу мүмкін емес.

Термодинамиканың ІІ бастамасы термодинамикалық процестердің қайтымсыздығын тұжырымдайды.

- тек қана жұмыс өндіретін немесе бір жылулық резервуармен энергия алмасуын жасайтын циклдік процесс болуы мұмкін емес (У.Томсон);

- салқын денеден ыстық денеге жылу берілуі мүмкін болатын циклдік процесс болуы мүмкін емес (Р.Клаузиус).

Есеп.

Газдың тығыздығы 0,03 кг/ м3 . Осы газдың орташа квадраттық жылдамдығы 500 м/с болса, онда оның ыдыс қабырғаларына түсіретін қысымын тап.

4. ЭҚК-і 1,5 В ток көзіне кедергісі 0,1 Ом катушка қосылғанда амперметр 0,5 А ток көрсетті. Ток көзіне параллель етіп дәл сондай екінші ток көзі қосылғанда ток күші 0,4 А болды. Бірінші және екінші ток көздерінің r1 және r 2 ішкі кедергілерін тап..

 

 

№6 ЕМТИХАН БИЛЕТІ

1. Инерция моменті. Штейнер теоремасы.

Дененің кез келген өске қатысты инерция моменті өске параллель болатын, масса центрі арқылы өтетін өске қатысты инерция моменті мен дененің массасының өстерінің арақашықтығының квадратына көбейтіндісінің қосындысына тең болады.

(1.5.3.1)

мұнда - дененің масса центрі арқылы өтетін өске қатысты инерция моменті, - остердің арақашықтығы.

Мысал ретінде айналыс өсі бір ұшы арқылы ететін өзектің инерция моментін есептейік. Штейнер теоремасын қолданып төмендегідей өрнек жазуға болады.

мүндағы - айналыс өсі масса центрі аркылы өтетін өзектің инерция моменті.

http://studopedia.net/11_10437_shteyner-teoremasi.html

2. Әр түрлі процестердегі идеал газдың атқарған жұмысын есептеу.

Денені тұрақты көлемде қыздырғанда барлық жылу ішкі энергияны арттыруға жұмсалады, бір кило моль үшін . P=const жылу мөлшері ішкі энергияны арттыруымен қатар дененің көлемін ұлғайтуға қажетті жұмысқа жұмсалады ,

Изохора A=0. Изобара . Изотерма

Адиабаталық , , . Политропты ,

 

Есеп.

Дөңгелек орамның магнит моменті 0,2 Дж/Тл. Орамның диаметрі 10 см болса, онда орамдағы ток күші неге тең?

4. Q1=Q2=8 нКл зарядтардың арақашықтығы d= 40 см. Осы зарядтардың ортасындағы нүктедегі өріс кернеулігін табыңыз.

 

 

№7 ЕМТИХАН БИЛЕТІ

1. Консервативті және консервативті емес күштер. Сыртқы күш өрісіндегі бөлшектің потенциалдық энергиясы және оның консервативті күшпен байланысы. Бөлшектер жүйесінің потенциалдық энергиясы..

Барлық күштерді физикалық табиғатына тәуелсіз консервативті және консервативті емес күштер деп екі топқа бөледі. Егер күштің жұмысы бөлшектің бастапқы нүктеден соңғы нүктеге қандай траекториямен орын ауыстырғанына байланысты болмаса, ондай күштер консервативті күштер деп аталады . Егер орын ауыстыру тұйықталған жолмен өтсе, консервативті күштің жұмысы нөлге тең болады .

Орталық (гравитациялық, кулондық) күштер, ауырлық күші, серпімділік күші консервативті күштерге жатады.

Консервативті емес күштің жұмысы орын ауыстыру өтетін жолға тәуелді болады. Консервативті емес күштерге үйкеліс күштері, ортаның кедергі күші жатады. Үйкеліс күшінің жұмысы әрқашан теріс болады. Мұндай күштер диссипативті деп аталады.

Кеңістіктің әрбір нүктесінде бөлшекке бір нүктеден екінші нүктеге заңдылығымен өзгеретін күш әсер ететін кеңістіктің аймағын күш өрісі деп атайды. Күш өрістері векторлық болып табылады. Күш өрісі біртекті (ауырлық күшінің өрісі) және орталық (гравитациялық өріс) болып бөлінеді. Консервативті күштер өрісі ерекше қасиеттерге ие, олар потенциалды өрістер класын құрайды. Әр нүктедегі өрісті кеңістіктегі нүктенің орнына және күштің сипатына тәуелді болатын қандай да бір Wp ( ) функциясымен сипаттауға болады. Олай болса, бөлшек 1 нүктеден 2 нүктеге орын ауыстырғанда консервативті күштің жұмысы Wp функциясының кемуіне тең болады

A12 =Wp1 –Wp2 =-∆Wp. (4.14)

Wp функциясы сыртқы консервативті өрістегі бөлшектің потенциалдық энергиясы деп аталады. Мұндай өрісте жұмыс потенциалдық энергия есебінен жасалатынын (4.14) теңдеуінен көруге болады.

Бөлшектің потенциалдық энергиясы Wp( ) өрісті тудыратын объектілермен өзара әсерлесу энергиясы болып табылады. (4.14) формуласы әрбір нақты жағдайда Wp үшін (кез-келген тұрақтыға дейінгі дәлдікпен) өрнегін алуға мүмкіндік береді.

Потенциалды өрісте орналасқан бөлшектің энергиясы мен күштің арасындағы байланыс ты анықтайық. Ол үшін элементар жұмыстың формуласын жазамыз .

күштің кез келген l бағытқа проекциясы .

Орын ауыстыру бағыты ретінде x, y, z координат осьтері бойындағы бағыттарды аламыз

, немесе .

2. Токтың жұмысы мен қуаты. Дифференциалды және интегралды түрдегі Джоуль-Ленц заңы. Ток көзінің ПӘК-і

Закон Джоуля-Ленца и тепловые потери

Теоретическая электротехника






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных