ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Свободные незатухающие колебанияСвободные незатухающие, гармонические колебания Свободными или собственными называются такие колебания, которые происходят в системе, предоставленной самой себе, после того как она была выведена из положения равновесия. Примером могут служить колебания шарика, подвешенного на нити. Для того чтобы вызвать колебания, нужно либо толкнуть шарик, либо, отведя в сторону, отпустить его. При толчке шарику сообщается кинетическая энергия, а при отклонении - потенциальная. Свободные колебания совершаются за счет первоначального запаса энергии. Свободные незатухающие колебания Свободные колебания могут быть незатухающими только при отсутствии силы трения. В противном случае первоначальный запас энергии будет расходоваться на ее преодоление, и размах колебаний будет уменьшаться. В качестве примера рассмотрим колебания тела, подвешенного на невесомой пружине, возникающие после того, как тело отклонили вниз, а затем отпустили (рис. 1.2).
Со стороны растянутой пружины на тело действует упругая сила F, пропорциональная величине смещения х:
При отсутствии трения упругая сила (1.4) - это единственная сила, действующая на тело. Согласно второму закону Ньютона (ma = F):
Таким образом, свободные колебания при отсутствии трения являются гармоническими, если при отклонении от положения равновесия возникает упругая сила (1.4). Собственная круговая частота является основной характеристикой свободных гармонических колебаний. Эта величина зависит только от свойств колебательной системы (в рассматриваемом случае - от массы тела и жесткости пружины). В дальнейшем символ ω0 всегда будет использоваться для обозначения собственной круговой частоты (т.е. частоты, с которой происходили бы колебания при отсутствии силы трения). Амплитуда свободных колебаний определяется свойствами колебательной системы (m, k) и энергией, сообщенной ей в начальный момент времени. При отсутствии трения свободные колебания, близкие к гармоническим, возникают также и в других системах: математический и физический маятники (теория этих вопросов не рассматривается) (рис. 1.3). Математический маятник - небольшое тело (материальная точка), подвешенное на невесомой нити (рис. 1.3 а). Если нить отклонить от положения равновесия на небольшой (до 5°) угол α и отпустить, то тело будет совершать колебания с периодом, определяемым по формуле
Физический маятник - твердое тело, совершающее колебания под действием силы тяжести вокруг неподвижной горизонтальной оси. На рисунке 1.3 б схематически изображен физический маятник в виде тела произвольной формы, отклоненного от положения равновесия на угол α. Период колебаний физического маятника описывается формулой
Момент инерции - это величина, зависящая от массы тела, его размеров и положения относительно оси вращения. Вычисляется момент инерции по специальным формулам. 1.. Гармонические колебания и их характеристики. Колебаниями называются процессы, которые характеризуются определенной повторяемостью во времени, т.е. колебания - периодические изменения какой-либо величины. В зависимости от физической природы различают механические и электромагнитные колебания. В зависимости от характера воздействия на колеблющуюся систему различают свободные (или собственные) колебания, вынужденные колебания, автоколебания и параметрические колебания. Колебания называются периодическими, если значения всех физических величин, изменяющихся при колебаниях системы, повторяются через равные промежутки времени. Период - это время, за которое совершается одно полное колебание:
где Частота колебаний - число полных колебаний, совершенных за единицу времени.
(единиц времени):pЦиклическая или круговая частота - число полных колебаний, совершенных за время 2
Простейшим типом колебаний являются гармонические колебания, при которых изменение величины происходит по закону синуса или косинуса (рис.1):
где
Колебательная система, совершающая гармонические колебания, называется гармоническим осциллятором. Скорость и ускорение при гармонических колебаниях:
:. 13. Понятие волны. Продольные и поперечные волны. Уравнения плоской и сферической волны. Волной называют колебания, распространяющиеся в пространстве с течением времени. Важнейшей характеристикой волны является ее скорость. Волны любой природы не распространяются в пространстве мгновенно. Их скорость конечна. При распространении механической волны движение передается от одного участка тела к другому. С передачей движения связана передача энергии. Основное свойство всех волн независимо от их природы состоит в переносе ими энергии без переноса вещества. Энергия поступает от источника, возбуждающего колебания начала шнура, струны и т. д., и распространяется вместе с волной. Через любое поперечное сечение непрерывно течет энергия. Эта энергия слагается из кинетической энергии движения участков шнура и потенциальной энергии его упругой деформации. Постепенное уменьшение амплитуды колебаний, при распространении волны связано с превращением части механической энергии во внутреннюю. Если заставить конец растянутого резинового шнура колебаться гармонически с определенной частотой v, то эти колебания начнут распространяться вдоль шнура. Колебания любого участка шнура происходят с той же частотой и амплитудой, что и колебания конца шнура. Но только эти колебания сдвинуты по фазе друг относительно друга. Подобные волны называются монохроматическими. Волны, рассматриваемый параметр которых (смещение молекул, механическое напряжение, и т.д.) изменяется периодически вдоль оси распространения, называются продольными волнами. Если колебания изменияются перпендикулярно оси., ОНИ НАЗЫВАЮТСЯ называются поперечными.
y 0= B sin(w t); y 1= B sin(w t+ Dj); y 2= B sin(w t+ 2Dj); y 3= B sin(w t+ 3Dj); и т.д. В общем виде уравнение распространения волны может быть записано в виде: z = A cos(w t - kx), где z - координата, по которой происходит движение частиц, x - координата оси, вдоль которой распространяется волна, k - волновое число, равноеw / v, v - скорость распространения волны. Зная частоту волны и скорость её распространения, мы можем найти сдвиг фаз между соседними шариками (частицами): Dj = (w / v)a, где a - расстояние между шариками в решётке.
x = A cos(w t+ j0); y = A sin(w t+ j0)
|