![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Сложные виды повреждений. Разновидности. Граничные условия при двойном замыкании на землю в сети с изолированной нейтралью.Ответ: Сложные виды повреждений представляют собой совокупность нескольких несимметричных замыканий или нарушений продольной несимметрии отдельных участков системы. Возможны случаи, когда в системе одновременно возникают как поперечные, так и продольные несимметрии в самых различных комбинациях. Практический интерес обычно представляет одновременное нарушение симметрии лишь в двух точках системы, так как более сложные повреждения являются редкими исключениями. Поэтому в дальнейшем рассмотрим лишь двухкратную несимметрию, причем будем предполагать, что обе несимметрии возникают одновременно. Рассмотрим основные принципы расчета таких повреждений. Их конкретное применение показано на двух наиболее часто встречающихся случаях: при двойных замыканиях на землю в сети с изолированной нейтралью и при однофазном КЗ с одновременным разрывом фазы. Любая несимметрия характеризуется симметричными составляющими токов и напряжений в месте несимметрии. Следовательно, при двухкратной несимметрии подлежат определению двенадцать неизвестных величин – по три симметричных составляющих напряжений и токов в каждой точке несимметрии. Для определения этих неизвестных нужно составить такое же число независимых уравнений. В гл. 6 и 7 было установлено, что из граничных условий возникшей несимметрии непосредственно вытекают три соотношения для симметричных составляющих напряжений и токов в месте несимметрии. Таким образом, при двухкратной несимметрии половина общего числа необходимых уравнений является следствием граничных условий. Остальные уравнения можно получить, рассматриваясвязи между токами и напряжениями одноименных последовательностей. Так, при поперечных несимметриях одновременно в произвольных точках M и N заданной системы, схемы отдельных последовательностей которой после преобразований могут быть представлены в виде эквивалентных трехлучевых звезд (рис. 8.1), из которых составим уравнения для составляющих напряжений в точках M и N: - для прямой последовательности (рис. 8.1, а):
Не нашли, что искали? Воспользуйтесь поиском:
|