Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Международная система единиц SI




 

Ниже приведены основные понятия, относящиеся к физической величине (здесь и далее все основные понятия по метрологии и их определения приводятся по рекомендации по межгосударственной стандартизации РМГ 29–99).

Размер физической величины – количественная определенность физической величины, присущая конкретному материальному объекту, системе, явлению или процессу.

Значение физической величины – выражение размера физической величины в виде некоторого числа принятых для нее единиц.

Истинное значение физической величины – значение физической величины, которое идеальным образом характеризует в качественном и количественном отношении соответствующую физическую величину (может быть соотнесено с понятием абсолютной истины и получено только в результате бесконечного процесса измерений с бесконечным совершенствованием методов и средств измерений).

Действительное значение физической величины – значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него.

Единица измерения физической величины – физическая величина фиксированного размера, которой условно присвоено числовое значение, равное 1, и применяемая для количественного выражения однородных с ней физических величин.

Система физических величин – совокупность физических величин, образованная в соответствии с принятыми принципами, когда одни величины принимаются за независимые, а другие определяются как функции этих независимых величин.

Основная физическая величина – физическая величина, входящая в систему величин и условно принятая в качестве независимой от других величин этой системы.

Производная физическая величина – физическая величина, входящая в систему величин и определяемая через основные величины этой системы.

Система единиц физических единиц – совокупность основных и производных единиц физических величин, образованная в соответствии с принципами для заданной системы физических величин.

Основой системы мер в древнерусской практике послужили древнеегипетские единицы измерений, а они в свою очередь были заимствованы в древней Греции и Риме.

Естественно, что каждая система мер отличалась своими особенностями, связанными не только с эпохой, но и с национальным менталитетом.

Наименование единиц и их размеры соответствовали возможности осуществления измерений подручными способами, не прибегая к специальным устройствам. Так, на Руси основными единицами длины были пядь и локоть, причем пядь служила основной древнерусской мерой длины и означала расстояние между концами большого и указательного пальца взрослого человека. Позднее, когда появилась другая единица – аршин, пядь (1/4 аршина) постепенно вышла из употребления.

Мера локоть пришла к нам из Вавилона и означала расстояние от сгиба локтя до конца среднего пальца руки (иногда – сжатого кулака или большого пальца).

С XVIII в. в России стали применяться дюйм, заимствованный из Англии (назывался он «палец»), а также английский фут. Особой русской мерой была сажень, равная трем локтям (около 152 см) и косая сажень (около 248 см)

Указом Петра I русские меры длины были согласованы с английскими, и это была первая ступень гармонизации российской метрологии с европейской.

С развитием науки и техники требовались новые измерения и новые единицы измерения, что стимулировало в свою очередь совершенствование фундаментальной и прикладной метрологии.

Первоначально прототип единиц измерения искали в природе, исследуя макрообъекты и их движение. Так, секундой стали считать часть периода обращения Земли вокруг оси. Постепенно поиски переместились в атомный и внутриатомный уровень. В результате уточнялись «старые» единицы (меры) и появились новые. Так, в 1983 г. было принято новое определение метра: это длина пути, проходимого светом в вакууме за 1/299792458 долю секунды. Это стало возможным после того, как скорость света в вакууме (299892458 м/с) метрологи приняли в качестве физической константы. Интересно отметить, что теперь с точки зрения метрологических правил метр зависит от секунды.

Исторически первой системой единиц физических величин была принятая в 1791 году Национальным собранием Франции метрическая система мер. Она не являлась еще системой единиц в современном понимании, а включала в себя единицы длин, площадей, объемов, вместимостей и веса, в основу которых были положены две единицы: метр и килограмм.

В 1832 году немецкий математик К. Гаусс предложил методику построения системы единиц как совокупности основных и производных. Он построил систему единиц, в которой за основу были приняты три произвольные, независимые друг от друга единицы – длины, массы и времени. Все остальные единицы можно было определить с помощью этих трех. Такую систему единиц, связанных определенным образом с тремя основными, Гаусс назвал абсолютной системой. За основные единицы он принял миллиметр, миллиграмм и секунду.

В дальнейшем с развитием науки и техники появился ряд систем единиц физических величин, построенных по принципу, предложенному Гауссом, базирующихся на метрической системе мер, но отличающихся друг от друга основными единицами.

Рассмотрим главнейшие системы единиц физических величин.

Система СГС. Система единиц физических величин СГС, в которой основными единицами являются сантиметр как единица длины, грамм как единица массы и секунда как единица времени, была установлена в 1881 г.

Система МКГСС. Применение килограмма как единицы веса, а в последующем как единицы силы вообще, привело в конце XIX века к формированию системы единиц физических величин с тремя основными единицами: метр – единица длины, килограмм–сила – единица силы и секунда – единица времени.

Система МКСА. Основы этой системы были предложены в 1901 г. итальянским ученым Джорджи. Основными единицами системы МКСА являются метр, килограмм, секунда и ампер.

Наличие ряда систем единиц физических величин, а также значительного числа внесистемных единиц, неудобства, связанные с пересчетом при переходе от одной системы единиц к другой, требовало унификации единиц измерений. Рост научно–технических и экономических связей между разными странами обусловливал необходимость такой унификации в международном масштабе.

Требовалась единая система единиц физических величин, практически удобная и охватывающая различные области измерений. При этом она должна была сохранить принцип когерентности (равенство единице коэффициента пропорциональности в уравнениях связи между физическими величинами).

В 1954 г. Х Генеральная конференция по мерам и весам установила шесть основных единиц (метр, килограмм, секунда, ампер, кельвин и свеча) практической системы единиц. Система, основанная на утвержденных в 1954 г. шести основных единицах, была названа Международной системой единиц, сокращенно СИ (SI – начальные буквы французского наименования Systeme International). Был утвержден перечень шести основных, двух дополнительных и первый список двадцати семи производных единиц, а также приставки для образования кратных и дольных единиц. Позже перечень основных физических величин несколько изменился. В настоящее время Международная система единиц SI включает семь основных и две дополнительных физических величины, с помощью которых создается все многообразие производных физических величин и обеспечивается описание любых свойств физических объектов и явлений. В нашей стране единая система единиц физических величин утверждена ГОСТ 8.417 – 2002, введенным в действие с 1 сентября 2003 года.

Формализованным различием физических величин является их размерность. В таблице 1 приведены основные физические величины, их размерности и единицы измерения с указанием сокращенных обозначений [8].

Таблица 1 – Основные физические величины

Физическая величина Размер–ность Единица измерения Сокращенное обозначение ед. изм.
русское международное
Длина L метр м m
Масса M килограмм кг kg
Время T секунда с s
Сила эл. тока I ампер А А
Термодин. темп–ра θ кельвин К К
Сила света J кандела кд cd
Кол–во вещества N моль моль mol

 

Длина – величина, характеризующая протяженность, удаленность и перемещение тел или их частей вдоль заданной линии;

Метр есть длина пути, проходимого светом в вакууме за интервал времени 1/299 792 458 s [XVII ГКМВ (1983 г.), Резолюция 1]

Масса – величина, определяющая инертные и гравитационные свойства материальных объектов;

Килограмм есть единица массы, равная массе международного прототипа килограмма [I ГКМВ (1889 г.) и III ГКМВ (1901 г.)]

Время – величина, характеризующая последовательную смену явлений и состояний материи, характеризующая длительность их бытия;

Секунда есть время, равное 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия–133 [XIII ГКМВ (1967 г.), Резолюция 1]

Сила электрического тока – скалярная величина, равная производной по времени от электрического заряда, переносимого носителями заряда сквозь рассматриваемую поверхность;

Ампер есть сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 m один от другого, вызвал бы на каждом участке проводника длиной 1 m силу взаимодействия, равную 2·10–7 N [МКНВ (1946 г.), Резолюция 2, одобренная IX ГКМВ (1948 г.)]

Термодинамическая температура – температура, отсчитываемая по термодинамической шкале температур от абсолютного нуля;

Кельвин есть единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды [XIII ГКМВ (1967 г.), Резолюция 4]

Количество вещества – величина, равная числу структурных элементов, содержащихся в теле (системе тел);

Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде–12 массой 0,012 kg. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц [XIV ГКМВ (1971 г.), Резолюция 3]

Сила света – величина, равная отношению светового потока, распространяющегося от источника излучения в рассматриваемом направлении внутри малого телесного угла к этому телесному углу;

Кандела есть сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540·1012 Hz, энергетическая сила света которого в этом направлении составляет 1/683 W/sr [XVI ГКМВ (1979 г.), Резолюция 3]

Примечания

1. Кроме термодинамической температуры (обозначение T), допускается применять также температуру Цельсия (обозначение t), определяемую выражением t=T–T0, где T0 = 273,15 К. Термодинамическую температуру выражают в кельвинах, температуру Цельсия – в градусах Цельсия. По размеру градус Цельсия равен кельвину. Градус Цельсия – это специальное наименование, используемое в данном случае вместо наименования «кельвин».

2. Интервал или разность термодинамических температур выражают в кельвинах. Интервал или разность температур Цельсия допускается выражать как в кельвинах, так и в градусах Цельсия.

3. Обозначение Международной практической температуры в Международной температурной шкале 1990 г., если ее необходимо отличить от термодинамической температуры, образуют путем добавлении к обозначению термодинамической температуры индекса «90» (например, T90 или t90).

 

Международная система единиц включает в себя две дополнительные единицы – для измерения плоского и телесного углов.

Единица плоского угла – радиан (рад, rad) – угол между двумя радиусами окружности, дуга между которыми по длине равна радиусу. В градусном исчислении радиан равен 57°17'48".

Единица телесного угла – стерадиан (ср, sr) – телесный угол, вершина которого расположена в центре сферы и который вырезает на поверхности сферы площадь, равную площади квадрата со стороной, по длине равной радиусу сферы.

Дополнительные единицы использованы для образования единиц угловой скорости, углового ускорения и некоторых других величин. Сами по себе радиан и стерадиан применяются в основном для теоретических построений и расчетов, так как большинство важных для практики значений углов (полный угол, прямой угол и т.д.) в радианах выражаются трансцендентными числами (2π, π/2 и пр.).

Согласно международному стандарту ИСО размерность обозначается символом dim, от латинского «dimension» – размерность.

Размерность производной физической величины выражается через размерность основных величин с помощью степенного одночлена:

dim X = Lα·Mβ·Tγ·Iδ·θε·Jζ·Nη…,

где L, M, T, I, θ, J, N – размерности соответствующих физических величин; α, β, γ, ε, ζ, η – показатели степени, в которую эти размерности возведены.

Каждый показатель размерности может быть положительным или отрицательным, целым или дробным, нулем. Если все показатели размерности равны нулю, то величина называется безразмерной. Она может быть относительной, определяемой как отношение одноименных величин (например, относительная диэлектрическая проницаемость), и логарифмической, определяемая как логарифм относительно величины (например, логарифм отношения мощностей или напряжения).

Производные единицы СИ образуют по правилам образования когерентных производных единиц СИ.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных