ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
В иды правильных многогранниковТетраэдр Тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Сумма плоских углов при каждой вершине равна 180 градусов. Таким образом, тетраэдр имеет 4 грани, 4 вершины и 6 ребер. Элементы симметрии: Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии. Куб К Элементы симметрии: Куб имеет центр симметрии - центр куба, 9 осей симметрии и 9 плоскостей симметрии Октаэдр О Элементы симметрии: Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии. Икосаэдр И Элементы симметрии: Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии.
Додекаэдр составлен из двенадцати равносторонних пятиугольников. Каждая его вершина является вершиной трех пятиугольников. Сумма плоских углов при каждой вершине равна 324 градусов. Таким образом, додекаэдр имеет 12 граней, 20 вершин и 30 ребер. Элементы симметрии: Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии. Пять перечисленных выше правильных многогранников, часто называемых также «телами Платона», захватили воображение математиков, мистиков и философов древности более двух тысяч лет назад. Древние греки даже установили мистическое соответствие между тетраэдром, кубом, октаэдром и икосаэдром и четырьмя природными началами – огнем, землей, воздухом и водой. Что касается пятого правильного многогранника, додекаэдра, то они рассматривали его как форму Вселенной. Эти идеи не являются одним лишь достоянием прошлого. И сейчас, спустя два тысячелетия, многих привлекает лежащее в их основе эстетическое начало. О том, что они не утратили свою притягательность и поныне, весьма убедительно свидетельствует картина испанского художника Сальвадора Дали Тайная вечеря. Древними греками исследовались также и многие геометрические свойства платоновых тел; с плодами их изысканий можно ознакомиться по 13-й книге Начал Евклида. Изучение платоновых тел и связанных с ними фигур продолжается и поныне. И хотя основными мотивами современных исследований служат красота и симметрия, они имеют также и некоторое научное значение, особенно в кристаллографии. Кристаллы поваренной соли, тиоантимонида натрия и хромовых квасцов встречаются в природе в виде куба, тетраэдра и октаэдра соответственно. Икосаэдр и додекаэдр среди кристаллических форм не встречаются, но их можно наблюдать среди форм микроскопических морских организмов, известных под названием радиолярий. Не нашли, что искали? Воспользуйтесь поиском:
|