![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Дифракция ФраунгофераДифракция от одной прямоугольной щели Для наблюдения дифракции Фраунгофера источник света помещают настолько далеко от щели, что лучи можно считать практически параллельными. На практике источник света располагают в фокусе собирающей линзы, тогда лучи, вышедшие из линзы, будут параллельны (рис. 1).
Пусть на щель шириной Площади этих зон одинаковы, поэтому по принципу Гюйгенса-Френеля они испускают волны равной интенсивности. Разность хода между соответствующими точками соседних полосок по построению равна Число зон Френеля равно
если нечетное, то условие максимума:
Величина В направлении Если на щель падает белый свет, то для каждой длины волны будет соответствовать свой угол Дифракционная картина зависит от соотношения 1. Если 2. Если 3. От одной щели трудно наблюдать дифракционную картину из-за малой интенсивности. Поэтому обычно используется дифракционная решетка.
Дифракционная решетка Дифракционная решетка – это система одинаковых параллельных щелей, разделенных равными промежутками (рис. 2).
Величина На стеклянную пластинку алмазом наносят царапины. Там где царапина – непрозрачный промежуток решетки. На один миллиметр решетки наносят от 50 до 500 штрихов. Рассмотрим дифракцию от двух щелей (рис. 3).
Если под каким-то углом
Если каждая из щелей дает максимум, то на экране может быть максимум или минимум в зависимости от разности хода лучей
если нечетное, то минимум:
Итак, полная дифракционная картина для двух щелей определяется из условий:
Таким образом, между двумя главными максимумами располагается один дополнительный минимум. Можно показать, что между двумя главными максимумами в случае трех щелей будет располагаться два дополнительных минимума, при четырех щелях – три. В случае
Число Следователь но в случае N щелей между двумя главными максимумами располагаются N-1 дополнительных минимумов, разделенных вторичными максимумами, создающими весьма слабый фон. Вторичные или дополнительные максимумами обусловлены интерференцией света от более далеких щелей. Чем больше щелей, тем больше световой энергии пройдет через решетку, тем больше минимумов образуется между соседними главными максимумами, которые становятся более интенсивными и острыми. На рис. 4. качественно представлена дифракционная картина от восьми щелей.
Число главных максимумов зависит от отношения периода решетки к длине волны.
Полное число максимумов равно: Дифракционная решетка используется как спектральный прибор. При пропускании через решетку белого света, все максимумы, кроме главного, разлагаются в спектр (как было уже показано в случае дифракции на одной щели).
Голография Голография в переводе с греческого – полная запись (Голос – весь, грифо – пишу). Голография – это особый способ записи на фотопластинке структуры световой волны, отраженной предметом. При освещении голограммы пучком света эта волна почти полностью восстанавливается и создается впечатление, что наблюдается сам предмет. Обычный фотографический способ получения изображения предмета основан на регистрации с помощью фотопластинки различий в интенсивности света, рассеваемого разными малыми элементами поверхности предмета. Но при этом не учитывается расстояние, откуда идет свет. В результате получается плоское изображение предмета. Английский физик Габор (1948) высказал идею принципиально нового метода получения объемных изображений объектов. Он предложил регистрировать при помощи фотопластинки не только интенсивности но и фазы рассеянных предметом волн, воспользовавшись для этого явлением интерференции волн. Распределение интенсивности в интерференционной картине определяется как амплитудой интерферирующих волн, так и разностью их фаз:
Лазерный пучок делится на две части, одна его часть отражается зеркалом на фотопластинку (опорная волна), а вторая попадает на фотопластинку, отразившись от предмета (предметная волна). Опорная и предметная волны когерентны и они интерферируют на фотопластинке. Интерференционная картина, зафиксированная на фотопластинке после ее проявления, называется голограммой предмета. Голограмма в отличие от фотографического негатива объекта, не имеет внешнего сходства с предметом. Она представляет замысловатый узор из чередующихся малых областей различного почернения эмульсии. Восстановление изображение по его голограмме проясняется на рис.8.
Для восстановления изображения голограмма помещается в тоже положение, где она находилась на стадии получения. Ее освещают опорным пучком того же лазера. Вторая часть лазера перекрывается диафрагмой. В результате дифракции света на интерференционной структуре голограммы образуется два объемных изображения предмета. Одно мнимое, которое находится на том же месте, где был предмет, и действительное висячее. Мнимое изображение видно при наблюдении сквозь голограмму как через окно. Интерференционная картина в каждой точке голограммы определяется светом, рассеянным всеми точками предмета. Поэтому каждый участок содержит сведения обо всем предмете. С помощью малого осколка голограммы можно восстановить весь предмет. Однако уменьшение размеров голограммы приводит к ухудшению четкости получаемого изображения (чем меньше света, тем меньше света на ней дифрагирует на стадии восстановления изображения). Применяется голография для записи и хранения информации. На одну и ту же пластинку можно последовательно записать несколько различных голограмм, меняя угол падения опорной волны. На одной фотопластинке можно записать книгу объемом более тысячи страниц. Голография также применяется для кодирования информации. Чтобы восстановить по голограмме изображение предмета нужно точно знать положение фотопластинки при получении голограммы.
Не нашли, что искали? Воспользуйтесь поиском:
|