Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Анализ изменения давления в цилиндре насоса в период нагнетания




Рассмотрим процесс нагнетания жидкости одноцилиндровым насосом одинарного действия в нагнетательную линию длиной l н диаметром d н (рис. 10). Ось цилиндра насоса расположена горизонтально, геометрическая высота нагнетания равна z н, перекачиваемая жидкость имеет плотность ρ. Пусть в конце нагнетательного трубопровода поддерживается постоянное давление p к.

Запишем уравнение Бернулли для сечений 2–2 и 3–3:

, (39)

где р 2= р ц – давление жидкости в цилиндре насоса; v 2= v п – скорость движения жидкости в цилиндре, равная скорости перемещения поршня; р 3= р к – давление жидкости в конце нагнетательного трубопровода; v 3= v к – скорость движения жидкости в конечном сечении нагнетательного трубопровода; – потери напора между рассматриваемыми сечениями 2-2 и 3-3.

Перепишем уравнение (39) с учетом приведенных замечаний:

. (40)

Потери энергии между сечениями 2-2 и 3-3 состоят из потерь в местных сопротивлениях нагнетательного трубопровода, потерь по длине и потерь на преодоление сил инерции в цилиндре и в трубопроводе .

При этом учтем, что потери в нагнетательном клапане изменяются аналогично потерям во всасывающем клапане, поэтому выделим эти потери в виде отдельного слагаемого. Тогда местные потери представим в виде:

= , (41)

где – потери напора в нагнетательном клапане; – скорость движения жидкости в i -м участке нагнетательного трубопровода; – коэффициент местных потерь i -го местного сопротивления нагнетательного трубопровода.

Выразив в уравнении (41) скорость движения жидкости в трубопроводе через скорость поршня, получим:

= + , (42)

где – площадь поперечного сечения i- го участка нагнетательного трубопровода.

Потери напора по длине нагнетательного трубопровода, состоящего из j участков длиной lj н с диаметрами dj н площадью поперечного сечения fj н как и ранее, вычислим по известной формуле Дарси-Вейсбаха:

= , (43)

где λj н – коэффициент гидравлического трения на j- м участке.

С учетом отмеченных замечаний и обозначений, уравнение (40) примет вид:

. (44)

Выражение, стоящее в квадратных скобках представляет собой сумму потерь в местных сопротивлениях и потери по длине. Выполнив преобразование этого выражения, получим:

= , (45)

где – приведенный коэффициент гидравлических сопротивлений нагнетательного трубопровода.

Подставим в уравнение (44) уравнение (45) и выразим скорость движения жидкости v к в конечном сечении нагнетательного трубопровода через скорость поршня:

(46)

Потери напора на преодоление сил инерции жидкости в цилиндре вычислим по формуле:

. (47)

Аналогично вычислим потери напора на преодоление сил инерции жидкости в нагнетательном трубопроводе:

. (48)

Для исключения из уравнений (25), (26) и (27) тригонометрических функций, воспользуемся уравнением (8) из которого выразим cos φ, а затем – sin φ:

cos φ . (28)

. (29)

Подставив выражение (29) в уравнения (25), а (28)– в уравнения (26) и (27), получим:

+ = . (30)

. (31)

. (32)

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных