Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Когда мы окончательно победим ВИЧ?




 

Пока непонятно. Вряд ли в ближайшие 10 лет. Но прогресс есть.

Самая известная из впечатляющих историй – история Берлинского пациента, Тимоти Рэя Брауна. Этот удачливый человек одновременно был заражен ВИЧ и болен лейкемией. Ему требовалась пересадка костного мозга[28]. Его лечащий врач Геро Хюттер, собираясь приступить к рутинной процедуре поиска совместимого донора, вспомнил университетскую лекцию о том, что у некоторых людей встречается мутация корецептора CCR5 (который, наряду с CD4, используется вирусом для проникновения в клетку) и такие люди значительно менее восприимчивы к ВИЧ. В регистре потенциальных доноров костного мозга нашлось 80 человек, чьи клетки подходили для пересадки Тимоти Брауну (фантастически удачный результат, между прочим). Доктор Хюттер начал исследовать ген CCR 5 у всех этих людей, и на 62-й попытке его надежды оправдались. Новые лимфоциты Тимоти Брауна обладают приятным дополнительным свойством: в них практически не может проникнуть вирус иммунодефицита человека. В 2009 году, через 20 месяцев после операции, доктор Геро Хюттер сообщил [30], что, несмотря на отсутствие антиретровирусной терапии, ВИЧ до сих пор не удается выявить ни в крови, ни в костном мозге, ни в слизистой оболочке кишечника. В 2011 году врач подтвердил: признаков репликации вируса по-прежнему обнаружить не удается [31]. В 2013 году несчастного Тимоти Брауна придирчиво обследовали в шести лабораториях и буквально со всех сторон – биопсии, пункции, колоноскопии, куча анализов крови, все мыслимые и немыслимые способы поиска вируса во всех биологических материалах [32]. При таких условиях двум лабораториям удалось обнаружить следы РНК вируса в плазме крови, а одна обнаружила его ДНК в прямой кишке – правда, учитывая отсутствие таких данных в остальных лабораториях, нельзя окончательно исключить и ложноположительный результат. Во всяком случае, вирус по-прежнему не удается обнаружить ни в клетках крови, ни в лимфоузлах, ни в спинномозговой жидкости, ни в слизистой оболочке тонкого кишечника (где всегда тусуется много лимфоцитов, так что место для поиска вполне логичное). А в 2015 году сам Тимоти Браун опубликовал статью о своем опыте [33]: как заболел, как случайно выбрал ближайшую к дому больницу, где встретился с Геро Хюттером, как шло лечение, почему решил не скрывать свое настоящее имя и общаться с прессой. “Я не хочу быть единственным человеком в мире, излеченным от ВИЧ, – пишет Тимоти. – я хочу, чтобы другие ВИЧ-положительные пациенты присоединились к моему клубу!” Сегодня он переехал из Германии обратно на родину, в США, и основал там фонд имени себя самого, чтобы финансировать исследования вакцин и способов полного излечения от ВИЧ.

Разумеется, метод лечения, использованный для Тимоти Брауна, не подходит обычным больным: процесс замены костного мозга несопоставимо более опасен, чем ВИЧ-инфекция. Просто этот пример иллюстрирует, что у некоторых людей есть биологические особенности, которые делают их менее восприимчивыми к развитию заболевания. Мутация в гене CCR 5 – только одна из таких особенностей, а вообще врачи выделяют целую группу “нон-прогрессоров” – людей, которые после заражения ВИЧ годами сохраняют нормальную концентрацию CD4+ лимфоцитов без антиретровирусной терапии. В зависимости от критериев того, что такое “годами” и что такое “нормальная концентрация”, оценка численности этих счастливчиков в разных публикациях варьирует в очень широких пределах; автор наиболее внятного из найденных мной обзоров [34] предлагает считать, что таких людей 2–5 % среди всех ВИЧ-инфицированных. Причины такой устойчивости могут быть разными. Кому-то просто повезло заразиться ослабленным, неудачно мутировавшим вариантом ВИЧ. У кого-то особенно хорошо работают цитотоксические CD8+ лимфоциты – быстро и беспощадно находят и уничтожают каждую новую заразившуюся клетку. У кого-то вырабатывается особенно много противовирусного фермента APOBEC3G, который препятствует встраиванию ДНК вируса в геном хозяина. У кого-то удачная комбинация MHC -генов, позволяющая привлечь к новому вирусу особенно пристальное внимание иммунной системы. У кого-то сформировались особенно удачные антитела. И так далее, и тому подобное – там масса хитрой и красивой молекулярной биологии. Важно то, что эти механизмы нужно изучать, потому что это ключ к новым лекарствам против ВИЧ. Пока что единственное такое новое лекарство, вошедшее в клиническую практику, – это маравирок, который связывается с корецептором CCR5, мешая вирусу делать то же самое и, соответственно, проникать в клетку.

Но вообще перспективных подходов очень много. Исследуются новые схемы антиретровирусной терапии, ориентированные на интенсивное лечение заболевания вскоре после заражения, – есть отрывочные данные о том, что, возможно, в некоторых случаях это позволяет успеть подавить инфекцию до того, как она захватила организм [35]. Ведется поиск препаратов, которые могли бы стимулировать (!) синтез новых вирусных частиц: когда ДНК вируса встроена в геном и при этом неактивна, этот резервуар инфекции практически невозможно обнаружить, а вот с клетками, интенсивно производящими вирус, иммунная система борется [36]. Уже проведены первые испытания генной терапии – нескольким людям ввели их собственные CD4+ лимфоциты с измененным корецептором CCR5 (принцип такой же, как у берлинского пациента, только без пересадки костного мозга), и результаты получились довольно обнадеживающие; по крайней мере, такие клетки нормально выживают в кровяном русле и не подвержены заражению ВИЧ [37]. Еще один возможный подход – поиск хороших, удачных вариантов антител против вируса с их последующим введением пациентам [38]. А самая интересная история, хотя и далекая пока от клинической практики, – это применение нового метода редактирования генов, CRISPR/Сas9 (я о нем еще буду рассказывать в главе про ГМО), для того чтобы вот просто взять и вырезать вирусную ДНК из человеческого генома. Уже показано, что это действительно удается сделать в культуре клеток [39]. Осталось только понять, как сделать то же самое с настоящим пациентом.

Последняя модная тема, о которой принято говорить в связи с ВИЧ, – это перспективы создания вакцины. Прямо скажем, перспективы туманные. Универсальный принцип вакцинации – “ввести ослабленного возбудителя или его фрагменты” – здесь работает плохо. Возбудителя вводить вообще нельзя, слишком опасно. К его фрагментам организм, может быть, и выработает антитела (да и то не все вакцины позволяют достичь такого результата) – но это будут антитела только к той конкретной разновидности вируса, которая использовалась для создания вакцины. Как только человек сталкивается с каким-нибудь другим штаммом, он снова уязвим. Похожая история с гриппом, против которого поэтому приходится создавать новую вакцину каждый год. Но ВИЧ еще более разнообразен, чем грипп, да и встречается, к счастью, все же не настолько часто, чтобы попытка разработать (и вколоть каждому человеку!) вакцины от всех существующих штаммов оказалась рентабельной.

Приходится придумывать более хитрые подходы. Например, в России сейчас разрабатываются три вакцины. В московском Институте иммунологии сделали “Вичрепол”, содержащий самые консервативные, редко изменяющиеся белки ВИЧ (полученные генно-инженерными методами). В петербургском Биомедицинском центре есть вакцина “ДНК-4” – четыре гена ВИЧ в одной плазмиде. По генам в клетках человека строятся белки, к белкам формируются антитела, получается иммунный ответ. Вакцина, созданная в новосибирском ГНЦ вирусологии и иммунологии “Вектор”, называется “КомбиВИЧвак”. Она содержит сложный и красивый искусственный белок TBI, в который включены фрагменты антигенов ВИЧ, пространственно ориентированные таким образом, чтобы B-лимфоцитам и T-лимфоцитам было удобно с ними знакомиться. Но ни один из этих препаратов еще не прошел клинических испытаний второй и третьей стадии, которые позволили бы оценить эффективность. А именно в этот момент обычно разрушаются все надежды. Иногда вообще выясняется, что новая вакцина, разработчики которой грозились спасти человечество, не то что не снижает, а повышает риск заражения [40].

Испытание эффективности вакцины от ВИЧ – это отдельная проблема. Надо набрать очень большую группу здоровых людей, половине ввести вакцину, половине ввести плацебо, а потом несколько лет ждать, кто из них заразится ВИЧ, а кто нет. Люди, в общем, существа довольно легкомысленные, презервативами пользоваться не любят, и в любой достаточно большой группе, за которой наблюдают достаточно длительное время, обязательно будут зараженные. Останется только сравнить, сколько зараженных в группе, которая получила вакцину, а сколько – в группе, получившей плацебо.

Самая успешная на сегодняшний день вакцина против ВИЧ снижает вероятность заражения на треть. Это лучше, чем ничего, но, увы, все-таки маловато для запуска массовой вакцинации. Она основана на многократном введении двух препаратов. Один из них представляет собой вирусный вектор, доставляющий в клетки три гена ВИЧ. Второй – созданный при помощи генной инженерии вирусный гликопротеин gp120 (шляпку от гриба, если вы еще помните мои попытки описать жизненный цикл вируса с привлечением художественных образов). В испытаниях [41] приняли участие 16 тысяч человек. Половина из них получила уколы настоящего препарата, половина – плацебо. За три с половиной года наблюдений заразились ВИЧ 56 человек в группе, получившей настоящую вакцину, и 76 человек в группе, которой вводили плацебо. Разницы в количестве вирусных частиц в крови у тех, кто все-таки заразился, в группах с настоящей вакциной и с плацебо зарегистрировано не было.

Совершенно не следует делать из этого вывод, что разработка вакцины против ВИЧ – дело безнадежное. Исследователи активно работают, механизмы иммунного ответа становятся все более понятны, развивается много параллельных направлений, все они вносят вклад в копилку знаний. Возможно, в разработке вакцины против ВИЧ в ближайшие годы и не будет резкого прорыва, но эффективность препаратов будет становиться все выше и рано или поздно достигнет уровня, на котором вакцинация уже становится осмысленной. Только что, в тот момент, когда я уже закончила главу про ВИЧ (на довольно пессимистической ноте) и описывала в четвертой главе влияние акупунктуры на мою трудовую биографию, научный журналист Алексей Торгашев обратил мое внимание (и внимание общественности) на три свежие статьи [42], [43], [44], посвященные обсуждению вопроса о том, как бы так вакцинировать людей (точнее, пока животных), чтобы они вырабатывали антитела широкого спектра действия, способные нейтрализовать большое количество разных штаммов вируса.

Тут нужно опять вспомнить, как вырабатываются антитела, – я писала об этом в главе про прививки. Сначала B-лимфоцит связывается с антигеном случайно, просто потому, что его рецептор более или менее подошел. Потом, после получения разрешающего сигнала от T-лимфоцита, B-лимфоцит начинает размножаться и при этом мутировать, чтобы получались разные варианты антител, среди которых можно будет выбрать наиболее подходящие. И вот для того, чтобы получились не просто вообще какие-нибудь антитела к ВИЧ, а антитела определенной структуры, направленные на конкретный фрагмент вируса, должно произойти много-много специфических мутаций, и все в определенном, заданном направлении. То есть надо сначала ввести первый антиген, чтобы в принципе спровоцировать серию мутаций в B-лимфоцитах, которые его распознали. Потом ввести второй антиген, чтобы среди этой новой популяции B-лимфоцитов нашелся кто-нибудь, кто связывается именно с ним, – и тоже начал мутировать с целью еще более качественного связывания. Потом ввести еще один антиген для выбора подходящих B-лимфоцитов для селекции именно среди этих мутантов третьего поколения. И так до тех пор, пока не появятся именно такие антитела, которые смогут эффективно защищать пациента от ВИЧ.

При обычной вакцинации антитела у разных людей получаются разные. Одни ловят вирус, условно, за пятку, другие за фалды сюртука, третьи за безымянный палец. А тут нужно, чтобы антитела у всех пациентов формировались такие, чтобы ловить вирус конкретно за третью пуговицу рубашки. При этом если ввести сразу только пуговицы от рубашки, то иммунная система их с высокой долей вероятности проигнорирует, они не очень похожи на большого опасного преступника. Надо сначала вводить рубашку, а потом поощрять тех, кто в ней связался именно с пуговицами, а потом тех, кто именно с третьей пуговицей. Звучит по-дурацки, зато возникает иллюзия понимания (ну, по крайней мере у меня). Становится ясно, что в борьбе с ВИЧ используются ужасно сложные и красивые подходы, так что, скорее всего, мы дождемся окончательной победы человечества над вирусом. А пока что надо не бояться ВИЧ-инфицированных, не думать, что они немедленно умрут или не смогут работать, спокойно с ними дружить. Когда дружба дойдет до секса – использовать презервативы. Как, собственно, и с любым новым партнером.

 

 

Глава 4

“Акупунктура – серьезный метод лечения”

 

Ну, от некоторых разновидностей боли и тошноты действительно помогает.

 

Научная журналистика сегодня бурно развивается. Благодаря пятнадцатилетней работе фонда “Династия” (теперь, увы, закрытого, потому что он не понравился действующей власти) у нас в стране начали издавать множество научно-популярных книг, и люди привыкли их читать. В любом крупном городе пользуются успехом научно-популярные лекции и время от времени проводятся фестивали науки. Появились научные музеи с интерактивными экспонатами, учебно-развлекательные лаборатории для детей. Три года назад в СПбГУ открылась первая магистратура, где можно получить диплом, в котором так прямо и написано: “научный журналист”. Научно-популярные СМИ множатся, как грибы, и практически в любом СМИ широкого профиля регулярно публикуются статьи если и не о фундаментальной науке, то по крайней мере о прикладных разработках.

В среде тех, кто называет себя научными журналистами, то есть зарабатывает себе на жизнь путем публикации материалов о науке и медицине, ориентированных на широкую аудиторию, сосуществуют два конкурирующих подхода к работе с информацией: журналистика исследований и журналистика экспертов. Приверженцы первого направления редко общаются с живыми людьми. Как правило, они генерируют свои тексты путем поиска и адаптации статей об исследованиях, опубликованных в рецензируемых журналах. Приверженцы второго направления мало читают научные публикации (если вообще это делают) – они в основном берут интервью у исследователей и врачей, которые преподносят им всю информацию в адаптированном виде.

В целом, конечно, у обеих стратегий есть свои преимущества. Работа с первоисточниками позволяет, во-первых, находить уникальные исследования, о которых на русском языке еще вообще никто не писал. Во-вторых, она в большей степени способствует научной корректности излагаемой информации – просто потому, что происходит одинарное, а не двойное популяризаторское искажение (конечно, если мы говорим о квалифицированных авторах, способных адекватно понять научную статью). В-третьих, это просто удобнее – можно работать в любой точке пространства, в любое время суток и абсолютно не зависеть от планов остальных людей. С другой стороны, общение с крутыми учеными позволяет узнать о таких исследованиях, которые ты бы сам никогда не нагуглил, просто потому, что не знаешь, что именно гуглить, или понять то, чего бы ты без помощи профессионала не понял. Есть научные журналисты, которые успешно сочетают оба этих подхода – например, Ирина Якутенко, которая стояла у истоков возрождения популяризации науки в нашей стране, когда писала о ней на старой “Ленте. ру” (и просто в силу формата издания не могла обходиться совсем без разговоров с известными учеными), или Светлана Ястребова, которая любит путешествовать и поэтому легко соглашается поехать на какую-нибудь международную конференцию и взять там интервью у всех собравшихся звезд. Есть научные журналисты, которые пользуются первоисточниками и никогда (или почти никогда) не берут ни у кого комментариев, – например, Николай Кукушкин, потому что он совмещает популяризацию с исследовательской деятельностью, то есть может неплохо выступить в роли эксперта сам для себя. Выдающихся научных журналистов, которые вообще не пользуются первоисточниками, а только общаются с учеными, кажется, нет – ну, во всяком случае, их никто не помнит, потому что в этой ситуации читатель запоминает героя, а не автора интервью.

В идеальном мире, конечно же, и общением с экспертами должны заниматься только высококвалифицированные научные журналисты – как минимум с естественнонаучным образованием и приемлемым уровнем английского. Они способны найти хорошего исследователя, придумать для него нетривиальные вопросы, корректно понять изложенное[29]и перепроверить спорные утверждения. Но чаще всего, увы, общением с экспертами занимаются люди с журналистским, а не с научным бэкграундом, просто потому, что это кажется более простой задачей. Из этого следуют три серьезные проблемы. Во-первых, журналист воспринимает слова эксперта как истину в последней инстанции, относится к ним со слепым доверием. А ведь ученый тоже человек, он, может быть, утомлен постоянным критическим восприятием своих слов со стороны коллег, а тут красивая девочка сидит и внимает, открыв рот. В такой ситуации даже хороший специалист может увлечься и преподнести гипотезу (одну из многих, не вполне подтвержденную) как твердо установленную научную истину – в том случае, если ему самому эта гипотеза нравится больше прочих. Во-вторых, в рамках борьбы с этой проблемой (журналистское сообщество ее осознает) возник стандартный способ компенсации: представление альтернативных мнений. Но если при разбирательстве с каким-нибудь там скандалом вокруг ТСЖ выслушать и жителей дома, и сотрудников коммунальной службы – это вполне разумное решение, то при обсуждении научных проблем сплошь и рядом оказывается, что одно-то из мнений подтверждено сотнями и тысячами научных публикаций, а второго придерживается горстка фриков. И если журналист этого не осознает, то он на полном серьезе публикует креациониста рядом с эволюционным биологом, борца с ГМО рядом с генетиком, антипрививочника рядом с иммунологом. И у аудитории возникает ощущение, что эти мнения равноправны. Но это еще полбеды. Третья проблема, связанная с отсутствием привычки оценивать научные публикации, еще серьезнее. Если вы хотите сделать материал про работу сердца, то вы идете к кардиологу. Логично? Логично. Если вы хотите сделать материал про пересадку почки, вы идете к трансплантологу. А если вы хотите сделать материал про гомеопатию? Вы идете – та-дам! – к гомеопату. А если про акупунктуру, то к специалисту по акупунктуре. Он вам, ясен пень, говорит, что метод отличный и работающий. Вы это публикуете и уверены, что вы хороший научный журналист.

Еще веселее становится, если вы принадлежите к школе журналистики исследований, а ваше начальство принадлежит к школе журналистики экспертов, или наоборот. Некоторое время назад я наотрез отказалась добавлять в статью о сомнительной эффективности акупунктуры, написанную хорошим автором на основе публикаций в научных журналах, комментарий специалиста по акупунктуре о том, что все публикации – фигня, а метод прекрасно работает. Мое начальство, принадлежащее как раз к школе журналистики экспертов, весьма пламенно мне объяснило, что это у меня юношеский максимализм, а хороший редактор учел бы разные точки зрения. Это был не первый случай идеологических расхождений, но именно после этого разговора я пожала плечами и написала заявление об уходе, чтобы не занимать кресло хорошего редактора и не мешать журналу развиваться в правильном направлении. Статью об акупунктуре в существующем виде журнал решил не публиковать, так что автор отдал ее в “Популярную механику” [1]. Там, вероятно, тоже работает плохой редактор, потому что никаких комментариев от адептов акупунктуры в тексте, разумеется, так и не появилось. Но зато я с тех пор много думала о том, какой я, действительно, злобный и вредный человек, и поэтому сейчас я попробую, в качестве интеллектуального упражнения, как раз написать главу, более или менее лояльную к акупунктуре – настолько, насколько это возможно, если пользоваться публикациями все-таки из рецензируемых журналов, пусть и не всегда качественных[30].

Для начала следует сделать небольшое отступление о терминологии. Рефлексотерапией в русском языке называется вся совокупность методик терапевтического воздействия путем раздражения нервных окончаний. Это воздействие осуществляется разными способами: с помощью тепла, электрических импульсов, механических факторов, в том числе и введения в кожу тонких иголок длиной до 15 (!!!) сантиметров [2]. Последнюю методику называют акупунктурой, или иглотерапией, или иглоукалыванием (если еще сильнее вдаваться в подробности, то акупунктура может быть и без иголок – например, за счет воздействия электрическим током на акупунктурные точки, и тогда ее иглоукалыванием уже не называют). Слова “рефлексотерапия” и “акупунктура” часто используются в русском языке как синонимы (вследствие того, что советские врачи активно изучали иглоукалывание и при этом объясняли его эффекты в первую очередь за счет рефлекторного ответа нервных окончаний).

 

В иглоукалывании важно знать меру.

 

Еще в русском языке есть слово “рефлексология”, которое подразумевает массаж “активных точек” на ступнях или каких-нибудь других причудливо выбранных частях тела. В английском языке и под словом refexology, и под словом refexotherapy подразумевается обычно как раз воздействие на “активные точки” без какого-либо повреждения кожи, а к втыканию иголок в кожу относится только слово acupuncture. Я собираюсь говорить именно об акупунктуре (массаж ступней все-таки меньше поражает воображение), но не удивляйтесь, если где-то я назову ее рефлексотерапией, ведь именно это слово используют для самоназвания российские кафедры, изучающие втыкание иголок, а также российские учебные книжки, посвященные этому захватывающему занятию.

Надо отметить, что в Советском Союзе вообще была довольно развитая школа акупунктуры: открывались кафедры, готовились учебные пособия, проводились исследования. Это началось в 1957 году, когда СССР и Китай еще связывала нежная дружба и делегации советских врачей неоднократно посещали китайские клиники. Первые лаборатории по изучению иглотерапии были основаны в Москве и Ленинграде в конце 1950-х. Целесообразность проведения такой работы обосновывают в статье, опубликованной в журнале “Здоровье” в марте 1961 года, два крупных специалиста по физиологии болевой чувствительности, профессора Иван Георгиевич Кочергин и Григорий Наумович Кассиль: “За многие и многие годы народные врачи Китая накопили огромный материал о результатах лечения иглоукалыванием и прижиганием, но он нуждается в тщательной научной проверке с помощью современных методов физиологического, физического и химического исследования”.

 

Что это, Бэрримор?

 

Когда мы оцениваем степень научной обоснованности какой-либо медицинской практики, желательно проанализировать два аспекта.

1. Может ли методика быть объяснена в рамках существующей научной парадигмы, без привлечения дополнительных загадочных сущностей?

2. Подтверждают ли исследования на пациентах, что методика работает более эффективно, чем плацебо?

Чтобы далеко не ходить за примерами, вспомним прошлые главы – благо там и ссылки на исследования уже есть. Гомеопатия высоких разведений, типа оциллококцинума, начисто проваливает этот тест по обоим пунктам. Ее эффект не может быть объяснен без привлечения не подтвержденных наукой концепций типа “памяти воды” (отдельный вопрос – какая память воды может остаться в сухих сахарных шариках?), и в клинических испытаниях она показывает ровно такую же эффективность, как плацебо. Антиретровирусная терапия против ВИЧ такой тест благополучно проходит: ученые знают, как именно действуют лекарства (например, зидовудин похож по химическому строению на тимидин, строительный блок ДНК; обратная транскриптаза ВИЧ работает более небрежно, чем человеческие ферменты, и во время строительства вирусной ДНК запросто может случайно использовать молекулу лекарства, после чего синтез обрывается), и многократно сравнивали эти лекарства с плацебо, получая реальные, измеримые преимущества, такие как снижение вирусной нагрузки и увеличение продолжительности жизни.

Акупунктура занимает промежуточное положение между этими двумя крайними вариантами. Не то чтобы у нее совсем не было механизмов объяснения, основанных на научных, а не на эзотерических концепциях, но гипотезы разнообразны, подчас противоречивы и довольно слабо обоснованы. Не то чтобы акупунктура всегда показывала нулевые результаты в клинических испытаниях, но эффективной она оказывается для небольшого числа состояний и, как правило, не во всех исследованиях. Особенно мило, что во многих работах не обнаруживается разницы между “настоящей” акупунктурой, когда иглы вводят в определенные точки с красивыми китайскими названиями, и “фэйковой”, когда иглы вводят вообще куда попало.

Типичное объяснение эффекта акупунктуры (в данном случае я цитирую Фізіологічний журнал НАН України, чтобы понимать, как ее воспринимают постсоветские исследователи) формулируется примерно следующим образом [3]. В организме есть энергия Ци. Она циркулирует по каналам (меридианам). Акупунктурные точки – это зоны для доступа внешней энергии Ци к внутренним органам, а каналы формируют сложную сеть между поверхностью тела и внутренними органами. При нарушении циркуляции энергии человек заболевает. Стимулирование акупунктурных точек влияет на движение энергии. Иногда можно встретить [4] завораживающе красивые наукообразные пассажи, например: “Известные в рефлексотерапии «меридианы» являются пространственным решением системы уравнений, задающим векторное поле потока энергии метаболизма”[31]. Вопросы есть?

Вопросы остаются. Сторонники акупунктуры в большинстве своем не сомневаются, что точки и меридианы существуют в реальности. Врачи, практикующие акупунктуру, из поколения в поколение стремятся найти для ее ключевых понятий какое-либо анатомическое или физиологическое объяснение. Например, в 1980 году в “Американском журнале китайской медицины” вышел небольшой обзор существовавших на тот момент представлений [5]. Из него следовало, что акупунктурные точки могут находиться над зоной вхождения двигательного нерва в мышцу; над зоной, где происходит объединение поверхностных нервов; просто над поверхностным нервом или нервным сплетением. Рассматривались данные о том, что при более глубоком погружении иглы в акупунктурную точку она во многих случаях проходит через глубоко расположенные нервы (звучит жутковато). Проводилась аналогия между акупунктурными точками и триггерными зонами мышц (участками их гиперреактивности; это чуть более научное понятие, чем акупунктурная точка, но тоже небесспорное [6]). Наконец, с большим энтузиазмом обсуждалась идея о том, что акупунктурные точки могут располагаться над перфорантными венами (небольшими сосудистыми перемычками между глубокой и поверхностной веной). Приводился аргумент: при исследованиях мертвых младенцев удалось продемонстрировать, что число перфорантных вен хорошо коррелирует с числом акупунктурных точек в соответствующей области (хорошо, что художнику не пришло в голову рисовать иллюстрацию к этому предложению). Версия о связи этих структур, отмечал автор, хорошо объясняет, почему акупунктура помогает не всем: такие вены у разных людей расположены в разных местах. Вскользь и с сомнением затрагивался вопрос о том, что поверхность кожи на месте акупунктурной точки вроде бы может обладать пониженным электрическим сопротивлением (эта гипотеза позже позволила изготавливать и продавать “приборы для поиска акупунктурных точек”, хотя толком подтвердить ее так и не удалось [7]).

Это далеко не исчерпывающий перечень представлений о природе акупунктурных точек, сформированных на заре научных исследований метода: мне попадались еще десятки версий разной степени проработанности. Но и из этого описания видно, что в 1980-е никакой ясности не было. Пускай бы даже выяснилось, что да, действительно, весь смысл в том, чтобы иголка задела перфорантную вену (или нерв, или мышцу). Почему это должно привести не к внутреннему кровоизлиянию (или повреждению нерва, или спазму мышцы), а к выздоровлению от того или иного заболевания (практически какого угодно, от бесплодия до глаукомы, лишь бы выбрать правильную точку), остается непонятным. Это само по себе нормально: в любой области медицины исследователи сегодня ориентируются принципиально лучше, чем 30 лет назад. Распространяется ли это утверждение на акупунктуру? До некоторой степени да: современные объяснения по крайней мере стали менее расплывчатыми [8]. Как и в прошлом абзаце, я сознательно выбрала статью из журнала, максимально лояльного к акупунктуре. Ее автор говорит об акупунктурных точках как о зонах, богатых нервными окончаниями, а в разговоре о меридианах приплетает анатомическую структуру под названием primo-vascular system – у нее нет ни устоявшегося перевода на русский, ни полноценного научного признания, но есть несколько исследователей, которые вроде как видели какие-то дополнительные сосудики, не относящиеся ни к кровеносной, ни к лимфатической системе, и публикуют об этих сосудиках исследования в акупунктурных журналах.

Что касается физиологических основ акупунктуры, то даже в лояльном к ней журнале автор все же признает, что универсального объяснения механизмов ее работы по-прежнему не существует. Впрочем, он предлагает множество версий, которые способны объяснить эффект акупунктуры частично. Во-первых, введение игл может способствовать выработке эндорфинов (это вполне правдоподобно, они вон даже под действием плацебо выделяются). Во-вторых, локально улучшает кровообращение (тоже логично). В-третьих, обсуждаются различные рефлекторные пути: воздействовали на акупунктурную точку – сигнал пошел в центральную нервную систему – сработала рефлекторная дуга – сигнал повлиял на иннервацию внутренних органов (это теоретически возможно, хотя и не очень понятно, в чем биологический смысл формирования рефлекторной дуги, способной, допустим, замедлить перистальтику желудка после укола в определенную точку на животе). Также заявлено, что иглоукалывание изменяет уровень серотонина, дофамина и других нейромедиаторов в мозге, а еще влияет на активность гипоталамуса, а следовательно, на эндокринную систему. Звучит великолепно. Идем читать исследование про серотонин [9], на которое ссылается автор. Это теоретический обзор в еще одном акупунктурном журнале за 1997 год. Там про серотонин три предложения: мол, когда втыкают иглу в правильную точку, то импульсы поступают в задние рога спинного мозга, а потом в головной – в ретикулярную формацию и мезолимбическую систему, – где непосредственно влияют на нисходящие серотонинэргические пути. На этом объяснение заканчивается, но зато приводится ссылка [10]. Она ведет на еще одно исследование в акупунктурном журнале, уже 1989 года. Это исследование поразительным образом не удается найти. Вообще. Даже абстракт. Ни в PubMed, ни в Google Scholar, ни в других системах поиска по научным публикациям, ни непосредственно на сайте названного журнала. Найти его не могу не только я, но и старшие товарищи, обладающие доступом к профессиональным базам данных; они подтвердили мне, что такую статью, по-видимому, в интернет никто никогда не выкладывал (редчайшая ситуация, второй случай в моей практике). Я с горя посмотрела еще пару работ, которые на эту статью ссылаются (это единственное, что удавалось обнаружить в ходе поиска), но ясности это не добавило. В принципе, можно было и не заморачиваться: сам тот факт, что статья опубликована в 1989 году, уже делает ее не лучшим источником для знакомства с современной нейрофизиологией.

Как ни странно, тот факт, что обзор ссылается на пустоту, не делает его автоматически неправильным. Если поискать данные о взаимосвязи серотонина и акупунктуры, не пользуясь предложенными ссылками, то находится вполне себе экспериментальное исследование аж на целых 16 крысах [11], каждой из которых вживили в мозг (в прилежащее ядро) канюлю, позволяющую при жизни оценивать уровень серотонина. После этого половине крыс вводили иглы в акупунктурные точки Шень Шу (это на спине, на уровне поясницы). Контрольная группа получала иголки не в настоящую точку, а куда-нибудь по соседству. Получилось, что у крыс, которым вводили иголки в правильное место, уровень серотонина повышался более чем в полтора раза, а у крыс, которым вводили иголки в неправильное место, – практически нет.

В общем, какие-никакие данные о том, что акупунктура вроде как может работать, хотя и весьма отрывочные, у человечества есть. Но само по себе обсуждение механизмов не дает ответа на вопрос об эффективности метода при лечении конкретных заболеваний. Для этого нужно смотреть на клинические исследования.

 

Как стать ежиком

 

Золотой стандарт в исследованиях любого метода лечения – сравнение его эффективности с эффективностью плацебо, не отличающегося с точки зрения субъективных впечатлений пациента. Это легко реализовать в случае с лекарствами: одним людям даем большую горькую красную таблетку с действующим веществом, другим – большую горькую красную таблетку, состоящую из микрокристаллической целлюлозы, красителя и вкусовой добавки. Последующее сравнение этих групп позволяет понять, в какой степени благоприятное и побочное действие лекарства вызвано исследуемым веществом, а в какой степени представляет собой реакцию людей на регулярный прием чего-нибудь горького и красного. В случае с акупунктурой имитировать процедуру (а значит, и оценить эффективность) значительно сложнее, хотя некоторые хитрости все же придуманы [12]. Во-первых, исследователи применяют фальшивые иглы, похожие на кинжал из магазина розыгрышей: когда их “вводят в кожу”, острие слегка прикасается к ее поверхности, но затем, под давлением, не входит в тело, а смещается в противоположном направлении, прячется в ручке иглы (пациент совершенно необязательно заподозрит неладное). Во-вторых, применяется фальшивая акупунктура, когда иголки по-честному вводят, но не в правильную точку, а в какое-нибудь другое место. Оба варианта не идеальны: ни один из них не может рассматриваться как полное отсутствие воздействия. В первом случае есть давление на акупунктурную точку. Это называется акупрессурой и тоже практикуется сторонниками альтернативной медицины[32]. Во втором случае есть, собственно, введение игл в тело человека, пусть и не там, где предлагали древние китайцы. Для получения более полной картины акупунктуру также нередко сравнивают с полным отсутствием воздействия или с результатами лечения обычными, общепринятыми методами.

Запрос acupuncture clinical trial в поисковой системе Google Scholar приносит 18 тысяч статей только за последние 10 лет. Абсолютный лидер в списке заболеваний, при которых используется акупунктура (если судить по просмотру первого десятка страниц выдачи), – это всевозможные разновидности хронической боли в мышцах и суставах. Проблемы с коленом? Со спиной? Фибромиалгия? Боль в шее? Акупунктура – ваш выбор! И в самом деле, обобщающие исследования нередко показывают, что при подобных состояниях настоящая акупунктура работает чуть-чуть лучше фальшивой, а фальшивая – заметно лучше, чем полное отсутствие лечения [13], [14], [15]. Правда, авторы неизменно подчеркивают, что этот результат может быть связан с явлением, которое по-английски называется publication bias, а по-русски “систематическая ошибка, связанная с предпочтительной публикацией положительных результатов исследования”. Очень возможно, что эта проблема касается и самих обобщающих работ. Из трех приведенных мной обзоров один опубликован в журнале, посвященном альтернативной медицине (то есть заведомо лояльном к ней), один выполнен по заказу сообщества акупунктурщиков (простите мне этот неологизм), и только в третьем нет явных проблем такого рода.

Статьи про акупунктуру время от времени выпускает Кохрейновское сообщество, которое мы все знаем и любим за тщательный анализ клинических исследований. К 2009 году набралось 32 кохрейновских исследования, упоминающих эту методику, про 32 заболевания соответственно, от астмы до синдрома раздраженного кишечника. Их общий обзор [16] взялся написать доктор Эдзард Эрнст, сам по себе интересный персонаж. Я вскользь упоминала его в первой главе книжки как гомеопата-вероотступника: после своего разочарования в эффективности альтернативной медицины Эрнст посвятил себя ее исследованиям с научных позиций и к настоящему времени стал одним из самых известных специалистов в этой области. Эдзарда Эрнста нежно любят журналисты, потому что он умеет все объяснять наглядно. Вот и при анализе 32 серьезных обзоров по акупунктуре он сделал среди прочего очень простую вещь: собрал их в таблицу, в которой процитировал выводы каждого исследования. Это завораживающее чтение. Обзор за обзором, болезнь за болезнью, и везде: “Накопленные данные не поддерживают акупунктуру”, “Свидетельства недостаточно обширные и строгие”, “Недостаточно данных”, “Качество исследований не позволяет сделать какой-либо вывод”, “Нет доказательств полезного действия”… в общей сложности в 25 случаях из 32[33]кохрейновские исследователи пришли к выводу, что акупунктура для данного заболевания не работает. В 2 случаях, для неспецифической боли в спине и боли во время схваток, ученые отказались делать какие-либо выводы из-за сильных противоречий в проанализированных данных или резко недостаточного их количества. Наконец, в 5 случаях они сообщили, что метод работает или по крайней мере может работать – это касается тошноты и рвоты, спровоцированных химиотерапией при лечении рака; детского энуреза; тошноты и рвоты после операций; головной боли неизвестного происхождения и боли в спине при беременности. Удивительно, но не удалось подтвердить эффективность акупунктуры для ряда состояний, при которых вообще-то должно хорошо действовать самовнушение, – например, депрессии или отказа от курения.

Важно понимать, что исследования эффективности любого метода всегда обобщают данные лечения большого количества людей. Если акупунктура не помогла 90 участникам исследования из 100, то в исследовании будет сделан вывод о том, что она неэффективна. При этом невозможно отрицать, что из оставшихся 10 человек она могла кому-то и помочь (а кто-то мог выздороветь и сам). Говорить о том, что она вообще никак не воздействует на организм, было бы неправильно – на него даже таблетки плацебо влияют, а тут вон вообще иголки, вмешательство гораздо более заметное. Существуют исследования, показавшие, что эффективность акупунктуры серьезно зависит от ожиданий пациента и от того, насколько ему симпатичен врач (причем эти факторы влияют сильнее, чем разница между настоящей и фальшивой акупунктурой! [17]). Поэтому если человек верит в акупунктуру – ей вполне можно пользоваться. Это относительно безопасно: научные публикации за период с 2000 до 2009 года описывают всего 95 серьезных осложнений и 5 смертельных исходов, вызванных акупунктурой [18]. В 4 случаях смерть была связана с проколом плевральной полости легкого: в этом случае развивается пневмоторакс, наступает удушье, и человека не всегда удается спасти. Последний пациент умер в результате возникновения аорто-дуоденальной фистулы, то есть отверстия между аортой (это самый крупный кровеносный сосуд нашего тела) и двенадцатиперстной кишкой. Его смерть была быстрой, но мучительной [19]. Я не буду описывать ее подробно, потому что первоначальный пафос данного абзаца заключался как раз в том, что я совершенно не пытаюсь пропагандировать полный отказ от акупунктуры среди людей, которых она вдохновляет. В конце концов, недаром же эта древняя, красивая и таинственная практика внесена в Список нематериального культурного наследия человечества ЮНЕСКО, наряду с такими важными вещами, как соколиная охота, танец фламенко, театр теней, монгольская каллиграфия и якутский героический эпос “Олонхо”.

 

Часть II

Научные холивары

 

Глава 5

“ГМО содержат гены!”

 

Я не издеваюсь. Институт статистических исследований и экономики знаний НИУ-ВШЭ каждые несколько лет просит респондентов сообщить, согласны ли они с утверждением “Обычные растения – картофель, помидоры и т. п. – не содержат генов, а генетически модифицированные растения – содержат” [1]. В 2003 году эта формулировка показалась правильной 21 % респондентов (еще 57 % затруднились ответить, и только 22 % осознали подвох). В 2011-м число согласных выросло до 47 %, а были не уверены или резко не согласны 24 % и 29 %.

 

Идеи носятся в воздухе. Вот например, долгие годы на русском языке практически не было научно-популярных книжек о лженауке. Лакуну отчасти заполнили переводные “Мир, полный демонов” Карла Сагана и “Псевдонаука и паранормальные явления” Джонатана Смита, но все равно остро не хватало текста, написанного русскоязычным автором с учетом российских реалий. Конечно, существовало множество статей и записей в блогах, но они не охватывали ряд важных тем, которые слишком сложно объяснять в таком формате, и к тому же привлекали гораздо меньше внимания общественности, чем полноценная бумажная книжка. Такая ситуация сохранялась лет двадцать, но вот только сейчас мы с Александром Панчиным умудрились практически одновременно написать книги практически на одну и ту же тему. Его “Сумма биотехнологии” великолепно описывает как методики создания генетически модифицированных организмов, так и циркулирующие вокруг них популярные заблуждения. Если вы ее уже читали, то эту главу можно спокойно пролистывать. Если пока не читали, то можно начинать с моего изложения, более короткого и простого.

В случае с созданием ГМО идея тоже носилась в воздухе. Потребность улучшать живые организмы, которыми мы питаемся, присутствовала всегда, но только по мере накопления теоретических знаний и лабораторных методик начался настоящий шквал открытий. Решить, кто именно был автором самого первого осознанно спроектированного генетически модифицированного организма, сложно хотя бы потому, что мы упираемся в вопрос определений того, что такое “осознанно” и что такое “генетически модифицированный” – не стоит ли, вообще говоря, начинать отсчет с одомашнивания первых растений и животных примерно за 10 тысяч лет до нашей эры? Или с формализации принципов искусственного отбора в XIX веке? Или по крайней мере с радиационного мутагенеза, уже прямого вмешательства в геном, в начале XX века? А как насчет Фредерика Гриффита, который еще в 1928 году смешал безобидный, но живой штамм пневмококка с опасным, но убитым и обнаружил [2], что бактерии способны захватывать наследственную информацию из окружающей среды и использовать ее, превращаясь в патогенных?

Если мы сосредоточимся на экспериментах, лучше отвечающих современному пониманию того, что такое генетическая модификация, то отсчет – условно! – стоит вести с 1970 года, когда Мортон Мандель и Акико Хига выяснили, как заставлять бактерии захватывать из внешней среды любую ДНК, даже если они не хотят этого делать, – путем химической стимуляции, например, с помощью обычного хлорида кальция [3]. Эта методика существенно упростила эксперименты, и в 1972 году в лаборатории Стэнли Нормана Коэна были получены первые бактерии с заданными свойствами. Кишечной палочке E. coli сознательно подсаживали гены устойчивости к антибиотикам, и большинство протестированных колоний действительно обретали способность жить и размножаться на питательной среде, в которую эти антибиотики были добавлены [4]. В том же году будущий нобелевский лауреат Пол Берг и его коллеги создают первые рекомбинантные ДНК, то есть молекулы, сочетающие генетическую информацию от разных видов – например, гены обезьяньего вируса SV40, бактериофага λ и бактерии E. coli [5]. Но годом рождения генной инженерии все же считается 1973-й, когда созданные в пробирке рекомбинантные кольцевые ДНК (плазмиды) были введены в клетки E. coli и благополучно начали там работать [6]. С этого момента стало в принципе понятно, что можно переносить любые произвольно выбранные гены из одного организма в другой; остальное было делом техники. В следующие 10 лет в лабораториях создавались первые генетически модифицированные животные и растения, были разработаны эффективные методы расшифровки ДНК и копирования заданных последовательностей, осваивались новые методики внедрения генов, от открывающихся перспектив захватывало дух. Однако использовать ГМО в медицине и сельском хозяйстве люди начали далеко не сразу (первое лекарство – в 1982 году, а первая сельскохозяйственная культура – в 1992-м). По данным 2013 года, генетически модифицированными растениями в мире засеяно 174 миллиона гектаров [7] (это больше, чем площадь Испании, Франции и Германии вместе взятых). При этом их разнообразие невелико: львиная доля посадок приходится на хлопок, рапс, сою и кукурузу, а всего выращивают на полях только около 30 видов генетически модифицированных растений – я говорю о видах в биологическом смысле, так-то для большинства из них существует несколько разных модификаций. Относительно медленный темп появления новых культур связан со сложностями их разработки и внедрения, которые, в свою очередь, в значительной степени вызваны страхом общественности, полагающей, что ГМО содержат гены.

 

Пчелы против меда

 

Технология генетической модификации выросла из фундаментальных исследований и далеко не сразу начала коммерциализироваться. И именно это обстоятельство, вследствие открытости и непредвзятости научного сообщества, поспособствовало раннему зарождению опасений. Слышали ли вы когда-нибудь, чтобы производители мобильных телефонов или газированных напитков проводили научные конференции, посвященные тому, что мобильные телефоны или газированные напитки могут быть опасны? А создатели ГМО с этого начали. Уже в феврале 1975 года Пол Берг, создатель первых рекомбинантных плазмид, проводит в Калифорнии знаменитую Асиломарскую конференцию [8], в ходе которой биологи договариваются о мерах предосторожности, связанных с созданием трансгенных организмов. Например, исследователи постулируют, что при работе с бактериями необходимо выбирать виды, которые плохо выживают в естественной среде обитания, использовать генетические конструкции, способные заражать только этих бактерий, и при этом соблюдать в лабораториях такие же жесткие правила безопасности, как при работе с патогенными микроорганизмами. В дальнейшем рекомендации многократно дополнялись и уточнялись в зависимости от того, о каких именно задачах шла речь, но общий принцип – серьезная проверка безопасности любых модифицированных организмов – сохранился и по сей день. Если бы исследователи договорились обо всем этом тайно или вообще пренебрегли бы такими жесткими мерами контроля (как им, кстати, и предлагал поступить Джеймс Уотсон, первооткрыватель ДНК [9]), скорее всего, никто бы и не догадался, что надо бояться ГМО. Насколько мне известно, широкая общественность никогда не выступала против селекции, по крайней мере на уровне демонстраций или борьбы с экспериментальными посадками. А между тем на самом-то деле при традиционной селекции сельскохозяйственных культур используются намного более жуткие методики, чем при создании ГМО.

Мы обычно представляем себе селекцию примерно так, как описано в книжке “Приключения Незнайки и его друзей” Николая Носова. Какой-то самоотверженный исследователь пробует сок от всех кислых арбузов, выбирает наименее кислый, сажает его семечки; когда они вырастают, переходит к следующей итерации и так до тех пор, пока сок арбузов не станет сладким. Этот подход возможен, но занимает адски много времени, потому что приходится ждать, пока в арбузе случайным образом, вследствие ошибок при копировании ДНК, произойдут именно такие мутации, которые скажутся на его вкусе. С начала XX века так уже никто не делает. Селекцию, с помощью которой получена пища из нашего холодильника, лучше описывает книжка Владимира Дудинцева “Белые одежды” – с той оговоркой, что там как раз сторонники Лысенко с селекцией борются (примерно на том же уровне научной обоснованности, на котором сейчас ведется борьба с ГМО). Для того чтобы получить сладкий арбуз, морозоустойчивую картошку или плодовитую пшеницу, нужно, чтобы исследователям было из чего выбрать. Для этого на семена (или просто на клетки в культуре) воздействуют радиационным излучением или ядовитыми веществами [10]. Получаются тысячи причудливых мутантов, из которых селекционеры затем выбирают того, кто обладает нужными признаками. Какие еще новые свойства появились у такого растения – никто особенно не проверяет, потому что селекции общественность не боится. Из-за этого иногда оказывается, что в растении, например, повысилось содержание токсичных алкалоидов, и приходится постфактум запрещать продажу этого сорта [11].

Генетическая модификация – это следующая, более совершенная ступень развития технологий улучшения сельскохозяйственных культур. От индуцированного мутагенеза она отличается тем, что исследователи меняют не много неизвестных генов, а один конкретный, они знают, что именно они делают и зачем (а потом еще и проверяют, что получилось). Разница в точности подхода – примерно как между бензопилой и маникюрными ножницами.

 

 

Интересно, что риторика противников ГМО, по-видимому, практически не изменилась за последние сорок лет. Основной аргумент: “Давайте не будем ничего делать, пока не убедимся, что это полностью безопасно”. Мне удалось найти публицистическую статью Стэнли Коэна, создателя первых трансгенных бактерий, написанную в 1977 году [12]. По-моему, она по-прежнему удивительно актуальна:

 

 

Сегодня, как и в прошлом, существуют люди, которым хотелось бы думать, что сохранение статус-кво дает свободу от рисков. Тем не менее даже статус-кво сопряжен с неизвестными рисками, а также с большой коллекцией известных опасностей. Человечеству продолжают угрожать древние и новые болезни, недоедание, загрязнение окружающей среды. Методы работы с рекомбинантной ДНК позволяют нам обоснованно ожидать частичного решения некоторых из этих проблем. Таким образом, мы должны спросить себя, готовы ли мы допустить, чтобы озабоченность опасностями, о существовании которых нам неизвестно, ограничивала нашу способность бороться с опасностями, которые действительно существуют.

 

 

Язык жизни

 

Генетическая модификация возможна благодаря тому, что мы все произошли от общего предка. В ходе эволюции под действием отбора или просто случайно у нас менялись гены, отвечающие за внутреннюю организацию клетки, число этих клеток в организме, существование и степень сложности нервной системы, форму и количество лапок и так далее. Но самое важное осталось неизменным: все живые существа на Земле по-прежнему используют один и тот же генетический код.

Если не зарываться в детали, то основной смысл наших генов – определять аминокислотную последовательность белков, а следовательно, задавать их структуру и функции. При этом ДНК состоит всего из четырех букв-нуклеотидов (A, G, T, C); аминокислот же у нас двадцать. В связи с этим строение каждой аминокислоты закодировано не в одном нуклеотиде, а в последовательности из трех. Если в ДНК написано “ACT GTA CGC”, то на этом основании будет построена последовательность из трех аминокислот: треонин – валин – аргинин. И последовательность будет именно такой независимо от того, чья клетка читает гены[34]. Принадлежит ли эта клетка мыши, человеку, бактерии E. coli, кактусу или шампиньону – она поймет эту универсальную инструкцию.

Из этого следует, что инструкции можно переносить из одного организма в другой без поправки на межвидовые барьеры[35]– и таким образом получать существ, которые вырабатывают нужные нам белки и, соответственно, обладают нужными признаками. Например, чтобы создать знаменитый золотой рис с повышенным содержанием бета-каротина, понадобилось внести в обычный рис три новых гена, кодирующих ферменты фитоенсинтазу, фитоендесатуразу и ликопинциклазу [13]. Первоначально были использованы два гена из нарциссов и один из бактерии Erwinia uredovora (она ничем не примечательна и для человека не опасна даже в целом виде), но бета-каротина вырабатывалось не очень много, и через несколько лет исследователи предложили улучшенную версию, в которой один из генов нарцисса заменили на ген кукурузы, кодирующий, как выяснилось, более эффективно работающий фермент [14].

На самом деле все эти “ген нарцисса” и “ген кукурузы” – это, скорее, популяризаторская фишка. В подавляющем большинстве случаев совершенно все равно, из кого именно брать ген, потому что гены, кодирующие важные ферменты, у самых разных организмов могут быть очень похожи. Чьи гены были в генном банке, те и используют; при желании можно вообще синтезировать сферический ген в вакууме, не принадлежащий вообще никому, просто это дорого стоит.

Так вот, семена улучшенного золотого риса содержат в среднем 25 микрограммов бета-каротина на грамм сухой массы. Бета-каротин еще должен превратиться в организме в ретинол (“истинный витамин А”), и этот процесс в принципе происходит не очень эффективно, независимо от того, едите ли вы трансгенный рис или органическую морковку. Поэтому, чтобы на 100 % удовлетворить суточную потребность в витамине А с помощью одного только золотого риса, необходимо каждый день варить и съедать 150 граммов этой крупы. Кажется, что это много, учитывая, как сильно рис разбухает при варке. Но, во-первых, метод в принципе ориентирован на беднейших людей, которые не покупают своим детям никаких фруктов и овощей, а кормят их одним рисом. Во-вторых, даже частичное удовлетворение потребности в витамине А позволяет предотвратить развитие слепоты, вызванной его отсутствием в пище (по оценке ВОЗ, ее жертвами становятся не менее 250 000 детей ежегодно [15]).

Золотой рис был создан еще в 2005 году, но его до сих пор не выращивают в промышленных масштабах. Отчасти это связано с жесткими испытаниями, которым подвергаются все генетически модифицированные продукты: пока химический состав золотого риса вдоль и поперек исследовали в лаборатории, пока убеждались в отсутствии аллергенов, пока кормили добровольцев, прошло несколько лет. Теперь золотой рис выращивают на экспериментальных полях в тех странах, где предполагается его использовать, чтобы выбрать самые урожайные линии. К сожалению, процесс внедрения золотого риса сталкивается с огромным сопротивлением общественности – например, в 2013 году экспериментальную делянку на Филиппинах просто вытоптали подчистую. В самом деле, слепота привычна и понятна, а вот современные биотехнологии – это таинственная и непостижимая опасность, от которой нужно во что бы то ни стало защитить наших детей.

Современные биотехнологии действительно трудно постичь – очень уж много накоплено информации. Молекулярные биологи располагают сегодня огромным количеством высокоточных методик, позволяющих определять последовательности ДНК, размножать молекулы ДНК в пробирке, разрезать их в заданных местах и соединять в новые конструкции, доставлять ДНК в клетки. Пытаться описать их все – задача прекрасная и невыполнимая (в рамках одной главы), поэтому я упомяну только о двух механизмах, которые мы позаимствовали у бактерий и поставили себе на службу.

Бактерия Agrobacterium tumefaciens [36]– природный генный инженер. Задолго до того, как люди начали строить дома, эта бактерия уже умела выращивать себе такой дом, как в фантастических фильмах, предоставляющий одновременно и убежище, и вкусную еду. Под влиянием бактерии клетки растения начинают, во-первых, бурно делиться (формируя на корнях объемные наросты, которые называются корончатыми галлами), а во-вторых, производить опины, вкусненькие химические соединения из аминокислоты и сахара, которыми бактерия питается.

Как добиться такого результата? У Agrobacterium tumefaciens есть, помимо других генов, небольшая кольцевая ДНК, Ti-плазмида. В ней есть маленький участок под названием T-ДНК, который будет встраиваться в ДНК растения и заставлять клетки бурно делиться и синтезировать для бактерии еду. А еще в Ti-плазмиде закодировано несколько белков, которые нужны для того, чтобы между клеткой растения и клеткой бактерии образовался канал, а еще для того, чтобы протащить через него T-ДНК и сделать так, чтобы она попала в ядро растительной клетки и встроилась в хозяйскую ДНК. Сама бактерия остается снаружи, Ti-плазмида остается в бактерии, а в растение попадает только небольшой фрагмент ДНК. Потом, когда растительная клетка будет делиться, она будет передавать бактериальные гены и своим потомкам.

 

 

Генетики берут эту готовую конструкцию, выкидывают из нее все те гены, которые нужны бактерии, и вставляют те, которые нужны людям. Несчастная обманутая бактерия проделывает всю ту же самую работу, но модифицированная клетка растения уже не начинает бурно делиться и не производит опины – зато обладает теми свойствами, которые нужны нам. Потом из удачно модифицированной клетки, благодаря способности растений к вегетативному размножению, можно будет вырастить целый организм. Именно с помощью такого подхода получена, например, устойчивая к засухе кукуруза MON87460, которую интенсивно выращивают по обе стороны Атлантического океана. В нее был введен бактериальный ген cspB, отвечающий за производство РНК-шаперона – белка, предотвращающего неправильную укладку молекул РНК под действием стресса, в данном случае недостатка воды. Его присутствие помогает кукурузе выращивать нормальные семена, даже когда ее недостаточно поливают. По остальным экологическим и пищевым параметрам эта кукуруза не отличается от такой же, но немодифицированной [16], [17].

Главный недостаток агробактериальной трансформации (и других методик генной инженерии первого поколения) – это невозможность контролировать, в какое именно место в ДНК растения встроится новая конструкция. Вообще-то это не такая большая проблема: мы ведь получаем не единственное растение, а несколько. Если она где-то встроится так, чтобы это повлияло на остальные свойства растения, – исследователи это заметят. Если будут сомневаться – расшифруют ДНК, чтобы установить место локализации точно. Тем не менее, действительно, методы генной инженерии нового поколения направлены на то, чтобы встраивать новую ДНК не куда попало, а в заранее заданное место. Есть несколько способов делать это в пробирке, но главный писк моды сейчас – система CRISPR/Cas9, позволяющая вставлять гены в заданное место прямо в живой клетке. Эта методика может не только упростить и удешевить получение новых генетически модифицированных животных и растений, но и привести к серьезным прорывам в медицине. Я уже упоминала ее в связи с вырезанием из человеческих клеток ДНК вируса иммунодефицита человека. Другая перспективная сфера применения – генная терапия, исправление ДНК человека для излечения наследственных заболеваний. Конечно, исследования и клинические испытания в этой области проводились и до появления CRISPR/Cas9, в том числе вполне успешные, но она вполне может в обозримом будущем привести к переходу медицины на качественно новый уровень. И да, систему CRISPR/ Cas9 исследователи тоже позаимствовали у бактерий. Зачем она им? Не поверите, это их приобретенный иммунитет.

Мы все знаем со школьной скамьи, что приобретенные признаки не наследуются. Это, в общем, правильный принцип. Он остается верным и в том случае, если обретение нового признака привело к изменению генов – но не во всем организме, а в каких-то отдельных его клетках, не участвующих в размножении. Если вы переболели краснухой и у вас сформировался к ней иммунитет, то геном тех B-лимфоцитов, которые с ней боролись, изменился, пока они подстраивались под выработку оптимальных антител против данного вируса. Но у вашего ребенка все равно не будет иммунитета к краснухе, если только не пытаться клонировать его из соответствующей клетки иммунной памяти (честное слово, это плохая идея). Если почвенная агробактерия изменила клетки корня растения, чтобы они бурно размножались и вырабатывали опсины, потомки этого растения, выращенные из семян, все равно не будут этого делать: где корень, а где семена?

Но вот если генетически изменилась та самая клетка, из которой получится потомство, – это совсем другое дело. Приобретенные признаки наследуются, когда генные инженеры используют способность растений к вегетативному размножению и выращивают целый организм из модифицированной ими клетки корня. А в природе приобретенные признаки сплошь и рядом наследуются у одноклеточных существ. Все, что повлияло на геном бактерии, передается ее потомкам. Благодаря этому она может позволить себе завести самый настоящий приобретенный иммунитет, что едва ли имело бы смысл без его передачи по наследству (много ли вирусов успеет встретить бактерия за 20 минут своей жизни от деления до деления?).

Когда бактерия все-таки встречается с атакующим ее вирусом, она берет из его ДНК кусочек и встраивает в свой собственный геном – на память. Не куда попало, а между определенными генетическими последовательностями, которые называются CRISPR.

Затем этот кусочек ДНК вируса используется как фоторобот. Бактерия строит по нему РНК-зонд, который плавает по ее клетке и ищет другие такие же фрагменты вирусной ДНК. Как только находит – в дело вступает белок-ножницы Cas9, разрезающий нежелательную ДНК и таким образом блокирующий дальнейшее размножение вирусов.

Что означало открытие этой системы для генных инженеров? Счастье, радость и торжество. У них появился комплекс из РНК-зонда и белка Cas9, способный узнавать конкретные нуклеотидные последовательности, и разрезать их в определенной точке, и делать это прямо в живой клетке. Что будет, если такую систему запустить в клетку высшего организма, настроив на распознавание его генов? Сам комплекс CRISPR/Cas9 просто разрежет обе цепи ДНК, и всё. Казалось бы, ничего хорошего.

Но дальше в игру вступают наши собственные механизмы починки генов. Чтобы правильно залатать разрез, они будут сравнивать испорченную ДНК с таким же участком на второй хромосоме (мы получаем хромосомы с одними и теми же генами от папы и от мамы). Если мы разрезали плохую, мутантную версию гена, а на второй хромосоме все в порядке – получается, что клетка сама починит ген, воспользовавшись образцом. Если нам нужно что-то новое – можно подсунуть клетке дополнительный фрагмент ДНК, который она сможет принять за вторую хромосому и использовать как образец.

Это еще не предел возможного. Систему можно настроить таким образом, чтобы клетка не просто починила себе одну хромосому, но и потом использовала ее как образец для починки второй. Исследователи, описавшие этот феномен, назвали его “мутагенная цепная реакция” [18]. Правда, они скорее ломали гены, чем чинили, – в экспериментальных целях, для наглядности.

У дрозофил есть ген yellow. Он так называется потому, что при его мутациях мушка перестает вырабатывать пигмент меланин и становится желтой. Он находится на X-хромосоме, а определение пола у мух такое же, как у нас. То есть классические законы наследования предполагают, что если скрестить желтых мух с обычными, коричнево-полосатыми, то все дочери в первом поколении будут коричнево-полосатыми, потому что по крайней мере от одного из родителей они получат нормальную Х-хромосому.

Обычно так и есть. Но весной 2015 года биологи Валентино Ганц и Итан Бьер добились того, чтобы измененная хромосома (“желтая”) передавала свою мутацию другой хромосоме в той же клетке (“коричневой”). В результате при скрещивании желтых мух с коричневыми среди родившихся девочек 243 были полностью желтыми (еще 11 обладали мозаичной окраской, и 6 все-таки были коричневыми, потому что система не сработала).






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных