ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Каталитические методы.
Каталитические методы очистки газов основаны на реакциях в присутствии твердых катализаторов, т. е. на закономерностях гетерогенного катализа. В результате каталитических реакций примеси, находящиеся в газе, превращаются в другие соединения, т. е. в отличие от рассмотренных методов примеси не извлекаются из газа, а трансформируются в безвредные соединения, присутствий: которых допустимо в выхлопном газе, либо в соединения, легко удаляемые из газового потока. Если образовавшиеся вещества подлежат удалению, то требуются дополнительные операции (например, извлечение жидкими или твердыми сорбентами). Широко распространен способ каталитического окисления токсичных органических соединений и оксида углерода в составе отходящих газов с применением активных катализаторов, не требующих высокой температуры зажигания, например металлов группы платины, нанесенных на носители. В промышленности применяют также каталитическое восстановление и гидрирование токсичных примесей в выхлопных газах. На селективных катализаторах гидрируют СО до CH4 и Н2 О, оксиды азота — до N2 и Н2 О etc. Применяют восстановление оксидов азота в элементарный азот на палладиевом или платиновом катализаторах. Каталитические методы получают все большее распространение благодаря глубокой очистке газов от токсичных примесей (до 99,9%) при сравнительно невысоких температурах и обычном давлении, а также при весьма малых начальных концентрациях примесей. Каталитические методы позволяют утилизировать реакционную теплоту, т.е. создавать энерготехнологические системы. Установки каталитической очистки просты в эксплуатации и малогабаритны. Недостаток многих процессов каталитической очистки— образование новых веществ, которые подлежат удалению из газа другими методами (абсорбция, адсорбция), что усложняет установку и снижает общий экономический эффект.
Соблюдение ПДК вредных веществ в воздухе населенных мест требует систематического контроля за фактическим их содержанием в атмосферном воздухе. Такой контроль позволяет оценивать эффективность работы пылеочистного оборудования, предусматривать необходимую степень очистки и совершенствовать технологию производства для снижения концентрации вредных веществ в отходящих газах. Интервал возможных концентраций загрязнений может изменяться от 10-8 до 105 мг/м3, а полидисперсные системы характеризуются, как правило, еще и широким спектром размеров частиц от 10-2 до 103 мкм. Это исключает возможность создания универсального метода измерения концентраций атмосферных загрязнений и объясняет дифференцированный подход к способам их измерения. При анализе запыленности воздуха предпочтение отдают методам, основанным на предварительном осаждении пыли, так как большинство из них позволяют определять массовую концентрацию взвешенных частиц. К недостаткам этих способов следует отнести циклический характер измерения, высокую трудоемкость и низкую чувствительность анализа. Наиболее часто применяют гравитационный, радиоизотопный и оптические методы. Гравитационный метод заключается в выделении из пылегазового потока частиц пыли и определения их массы. Концентрацию пыли рассчитывают по формуле С=m/Qτ, где m - масса пробы пыли, мг; Q - объемный расход воздуха через пробоотборник, м3/с; τ - время отбора пробы, с. Гравитационный метод признан стандартным в СССР, Англии, Франции, Бельгии и других странах. Основные преимущества этого метода - получение массовой концентрации пыли и отсутствие влияния ее химического и дисперсного состава на результаты измерений. К недостаткам относится достаточно большая трудоемкость процесса измерения. Радиоизотопный метод измерения концентрации пыли основан на свойстве радиоактивного излучения (обычно β-излучения) поглощаться частицами пыли. Массу уловленной пыли определяют по степени ослабления радиоактивного излучения при прохождении его через слой накопленной пыли. Результаты измерения концентрации пыли радиоизотопным методом зависят в некоторой степени от химического и дисперсного состава, что обусловлено особенностью взаимодействия радиоактивного излучения с веществом и нелинейностью зависимости степени поглощения от толщины слоя поглотителя. Однако, как показали исследования, эта погрешность не превышает ± 15%. В то же время методика измерения концентрации пыли радиоизотопным методом проще и не уступает гравитационному методу по точности и чувствительности и при создании автоматических систем контроля атмосферного воздуха вполне может заменить гравитационный метод. В оптических методах используется зависимость физических свойств (оптической плотности, степени поглощения или рассеивания световых лучей) пылевого осадка или запыленного потока газа от концентрации пыли. Оптическая плотность пылевого осадка зависит от концентрации и толщины уловленного слоя пыли. Измерение оптической плотности по степени све-топоглощения или рассеивания света называется фотометрическим методом анализа. С помощью его можно определять до 5•10-9 г вещества в пробе. Измерение степени рассеивания света взвешенными частицами, находящимися в растворе, положено в основу нефеломет-рического метода анализа. Чувствительность этого метода до 4•10-9 г вещества в пробе. Метод, основанный на явлении поглощения света при прохождении его через пылегазовую среду, называется абсорбционным методом. Такой метод позволяет измерять концентрацию взвешенных частиц непосредственно в атмосферном воздухе без предварительного отбора пробы.- Ослабление света в полидисперсной среде обусловлено не только поглощением, но и его рассеиванием. Изменение интенсивности рассеянного света является функцией размеров частиц. Это явление положено в основу создания приборов, позволяющих определить счетную концентрацию частиц и дисперсный состав анализируемой пыли. Серийно выпускаемый отечественной промышленностью счетчик аэрозольных частиц АЗ-2М регистрирует частицы размером более 0,3 мкм в интервале концентраций от 0 до 25 частиц/см2. Одним из перспективных способов измерения концентрации пыли является пьезоэлектрический метод. Возможны два варианта этого метода. В основе первого лежит измерение изменений частоты колебаний пьезокристалла при осаждении на его поверхности пыли. Этот метод позволяет непосредственно измерять массовую концентрацию пыли. В основе второго - счет электрических импульсов, возникающих при соударении частиц пыли с пьезокристаллом. Этот метод может быть использован для счетной концентрации частиц пыли. При измерении концентрации пыли находят применение и так называемые электрические методы: индукционный, контактно-электрический, емкостный и др. Эти методы положены в основу создания пылемеров, измеряющих концентрации аэрозолей непосредственно в пылевоздушной среде. На достоверность результатов этих приборов, существенное влияние оказывают влажность, природа пыли и изменение ее дисперсного состава во времени, поэтому широкого распространения для анализа атмосферного воздуха они не получили. Контроль концентраций газо- и парообразных примесей. Анализ газового состава атмосферного воздуха производится с помощью газоанализаторов, позволяющих осуществлять мгновенный и непрерывный контроль содержания в нем вредных примесей. Для экспрессного определения токсичных веществ широкое применение нашли универсальные газоанализаторы упрощенного типа (УГ-2, ГХ-2 и др.), основанные на линейно-колористическом методе анализа. При просасывании воздуха через индикаторные трубки, заполненные твердым веществом - поглотителем, происходит изменение окраски индикаторного порошка. Длина окрашенного слоя пропорциональна концентрации исследуемого вещества, измеряемой по шкале в мг/л. Выпускаемый серийно отечественной промышленностью универсальный газовый анализатор УГ-2 позволяет определить концентрацию 16 различных газов и паров. Погрешность измерения не превышает ± 10% от верхнего предела каждой шкалы. Для постоянного контроля состояния воздушной среды наибольшее применение нашли автоматические приборы, непрерывно регистрирующие концентрации анализируемого компонента в течение определенного времени. Методы контроля газовых примесей можно разделить на оптические, электрохимические, термохимические, хроматографические и др. Наибольшее распространение для определения токсичных примесей в воздухе нашли оптические методы. Принцип действия оптических газоанализаторов основан на избирательном поглощении газами лучистой энергии в инфракрасной, ультрафиолетовой или видимой областях спектра. К приборам, работающим в инфракрасной области, относятся оптико-акустические газоанализаторы. Обычно они применяются для определения оксида и диоксида углерода, а также метана. Приборы, в которых лучистая энергия поглощается газами в ультрафиолетовой области спектра, применяют для обнаружения в воздухе паров ртути, карбонила, никеля, озона и некоторых других газов. Большое распространение получили фотоколориметрические газоанализаторы, действие которых основано на поглощении лучистой энергии в видимой области спектра растворами или индикаторными лентами, изменяющими свою окраску при взаимодействии с определенным газовым компонентом Различают жидкостные и ленточные фотоколориметры. В жидкостных фотоколориметрах концентрация анализируемого компонента воздуха определяется по изменению светопоглощения раствора. Принцип действия ленточных фотоколориметров основан на фотометрировании индикаторной ленты, предварительно обработанной раствором, вступающим в химическую реакцию с определенным компонентом. Чувствительность ленточных фотоколориметров выше, чем жидкостных, поэтому они нашли более широкое применение. В последние годы получили распространение газоанализаторы, использующие не поглощение, а эмиссию излучения анализируемой газовой примеси. Сущность этого метода состоит в том, что исследуемые молекулы, например озона, оксидов азота, соединений серы, тем или иным способом приводят в состояние оптического возбуждения и затем регистрируют интенсивность люминесценции, возникающей при возвращении их в равновесное состояние. Применяются три типа люминесценции (и соответственно три типа газоанализаторов), различающихся между собой по типу возбуждения: хемилюминесценция (возбужденные молекулы возникают в ходе химической реакции), оптически возбуждаемая люминесценция (флюоресценция) и люминесценция в пламени (пламенно-фотометрические газоанализаторы). Электрические газоанализаторы подразделяются на кондуктометрические и кулонометрические. В основу принципа действия кондуктометрических приборов положено поглощение анализируемого компонента газовой смеси соответствующим раствором и измерение его электропроводности. Такие газоанализаторы широко применяются для определения концентрации сероводорода, сернистого ангидрида, аммиака, оксида и диоксида углерода. В кулонометрических газоанализаторах электрохимическая реакция протекает в ячейке между анализируемым газом и электролитом, в результате которой во внешней цепи появляется электродвижущая сила, пропорциональная концентрации определяемого компонента воздуха. Этим методом можно измерять содержание в атмосфере сернистого ангидрида, сероводорода, диоксида азота, озона, фтористого и хлористого водорода и др. При хроматографических методах анализа происходит разделение газовоздушной смеси сорбционными методами в динамических условиях. Разделение происходит в результате поглощения газовых компонентов на активных центрах адсорбции. В виду различия физических свойств отдельных составляющих газовоздушной смеси они продвигаются по хроматогра-фической колонке с разной скоростью, что позволяет раздельно фиксировать их на выходе. С помощью хро-матографических методов можно проводить качественный и количественный анализ органических и неорганических примесей воздуха с чувствительностью до 10-9 - 10-12%. Хроматографический метод успешно используется для определения содержания диоксида серы, сероводорода, меркаптанов, выхлопных газов автомобилей и обнаружения следов металлов в атмосфере (селена, теллура, ртути, мышьяка и др.). Широкое применение для регистрации выбросов промышленных предприятий, а также исследования загрязнений атмосферы получили лазерные методы, в которых учитывается рассеивание излучения лазера частицами аэрозолей и молекулами газов. Рассеянная энергия попадает на приемную антенну локатора. Регистрируя и расшифровывая следы взаимодействия лазерных импульсов с атмосферными слоями, можно извлечь информацию о давлении, плотности, температуре, концентрации различных газовых составляющих атмосферы и других параметрах. Создание лазеров большой мощности с узким и стабильным спектром излучения, лазеров с полностью автоматизированным циклом работ и передачей результатов в вычислительный центр, совершенствование методов извлечения информации из результатов зондирования позволяют осуществлять оперативный контроль степени загрязнения атмосферы в широких масштабах. Наиболее распространенные модели приборов для измерения концентраций пыли и газообразных примесей в атмосферном воздухе приведены в табл. 27. Не нашли, что искали? Воспользуйтесь поиском:
|