ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
ПРОЕКТИРОВАНИЕ ОТДЕЛЬНОГО ТРАНСФОРМАТОРА ПО ОБОБЩЕННОМУ МЕТОДУ 3 страницаk2к,з = 1,41 (1+ ) = 1,41 (1+ ) = 34,2. Минимальная стоимость активной части трансформатора имеет место при условиях, определяемых (3.55). Для рассчитываемого трансформатора
kо,с = 2,36 (см табл.3.7) C = A1/(3B1) = 800,9/(3·529,7) = 0,504; kи,р = 1,06; D = kо,с kи,р x5 + 0,232 x4 – 0,504 x – 2,27 = 0. Решение этого уравнения дает β=2,14, соответствующее минимальному С'а,ч. По (3.61) и (3.66) находим предельные значения β по допустимым значениям плотности тока и растягивающим механическим напряжениям xJ ≤ 4,5 = 1,46; βJ = x4J = 1,464 = 4,56; xσ ≤ = 1,619; βσ = 1,6194 = 6,87. Оба полученных значения β лежат за пределами обычно применяемых. Масса одного угла магнитной системы по (3.45а) Gy = 0,492·104kckяA3x3 = 0,492·104·0,9·1,03·0,22433x3 = 51,47x3. Активное сечение стержня по (3.59) Пc = 0,785 kcA2x2 = 0,785·0,9·22432 x2. Площадь зазора на прямом стыке П'з =П'с=0,0355х2; на косом стыке П'з =П'с/ = 0,05026x2. Для магнитной системы рис. 2.17,б по (8.33) потери холостого хода с учетом табл. 8.10, 8.13 и 8.14 Px = kп,дpc(Gc + 0,5kп,уGy) + kп,дpя(Gя - 6Gy + 0,5kп,уGy) = = 1,15·1,353(Gc + 0,5·10,18 Gy) + 1,15·1,242(Gя - 6Gy + 0,5·10,18Gy) = 1,556Gc + 1,428Gя + 6,621Gy. Намагничивающая мощность по (8.44) с учетом табл. 8.17 и 8.20 Qx = k'т,д k''т,дqc(Gc + 0,5kт,у kт,плGy) + k'т,д k''т,дqя(Gя - 6Gy + 0,5kт,у kт,плGy) + k''т,дΣqзnзПз; Qx = 1,20·1,956(Gc + 0,5·42,45·1,25Gy) + 1,20·1,07·1,66(Gя - 6Gy + 0,5·42,45·1,25Gy) + 1,07·3200·4·0,05026 х2 + +1,07·25000·3·0,0355х2 = 2,512Gc + 2,131Gя + 116,42Gy + 3537 х2. Далее определяются основные размеры трансформатора D = Ax; d12 = aAx; l = πd12/β; 2a2 = bd; C = d12 + a12 + 2a2 + a22. Весь дальнейший расчет, начиная с определения массы стали магнитной системы, для пяти различных значений β (от 1,2 до 3,6) проводится в форме табл. 3.8. Вариант IIА. Магнитная система плоская шихтованная по рис. 2.5, д. Обмотка ВН многослойная цилиндрическая из прямоугольного алюминиевого провода с электростатическим экраном. Обмотка НН из алюминиевой ленты. Определение исходных данных расчета (а1 + а2)/3 = 1,25 ·10-2 = 1,25·0,51 ·10-2 = 0,0306 м. (см. табл. 3.3, прим. 1); ap = a12 + (а1 + а2)/3 = 0,03 + 0,0306 = 0,0606 м (см. табл. 4.5, прим. 1). Активная составляющая напряжения короткого замыкания ua = Pк/(10S) = 18000/(10·1600) = 1,125 %; реактивная составляющая uр = %. Согласно указаниям § 2.3 выбираем трехфазную стержневую шихтованную магнитную систему по рис. 2.5, д с косыми стыками на крайних стержнях и прямыми стыками на среднем стержне по рис. 2.17,б. Прессовка стержней бандажами из стеклоленты по рис. 2.18,б и ярм - стальными балками по рис. 2.21, а. Материал магнитной системы холоднокатаная текстурованная рулонная сталь марки 3404 толщиной 0,35 мм. Цена 0,833 руб/кг. Индукция в стержне Вс=1,62 Тл (см. табл. 2.4). В сечении стержня восемь ступеней, коэффициент заполнения круга kкр=0,928 (см. табл. 2.5); изоляция пластин — нагревостойкое изоляционное покрытие, k3=0,97 (см. табл. 2.3). Коэффициент заполнения сталью kc=kкрk3 = 0,928·0,97=0,9. Ярмо многоступенчатое, число ступеней шесть, коэффициент усиления ярма kя=1,03 (см. табл. 8.7). Индукция в ярме Вя= 1,62/1,03=1,573 Тл. Число зазоров в магнитной системе на косом стыке четыре, на прямом три. Индукция в зазоре на прямом стыке В"3 = Вс = 1,62 Тл, на косом стыке В"3 = Вс / = 1,62/ =1,146 Тл. Удельные потери в стали рс = 1,353 Вт/кг; ря= 1,242 Вт/кг. Удельная намагничивающая мощность qс = 1,956 В·А/кг, qя=1,66 В·А/кг; для зазоров на прямых стыках q''з =25 000 В·А/м2; для зазоров на косых стыках qз =3200 В·А/м2 (см. табл. 8.10, 8.17). По табл. 3.6 находим коэффициент, учитывающий отношение основных потерь в обмотках к потерям короткого замыкания kд=0,91 и по табл. 3.4 и 3.5 постоянные коэффициенты для алюминиевых обмоток а=1,06·1,40=1,484 и b=1,25·0,31=0,388. Принимаем kр = 0,95. Диапазон изменения β от 1,2 до 3,6. Расчет основных коэффициентов. По (3.30), (3.36), (3.43), (3.44), (3.52) и (3.65) находим коэффициенты Таблица 3.8. Предварительный расчет трансформатора типа ТМ-1600/35 с плоской шихтованной магнитной системой и медными обмотками
A = 0,507 A1 = 5,633·104kcA3a = 5,633·104·0,9·0,23373·1,484 = 960,26 кг; A2 = 3,605·104kcA3lo = 3,605·104·0,9·0,23373·0,075 = 132,9 кг; B1 = 2,4·104kckяA3(a + b + e) = 2,4·104·0,9·1,03·0,23373(1,484 + 0,388 + 0,41) = 648 кг; B2 = 2,4·104kckяA2(a12 + a22) = 2,4·104·0,9·1,03·0,23372(0,03 + 0,03) = 72,9 кг; C1 = Ko = 355,75 кг. М = 0,156·10-6k2к,зkдkp = 0,156·10-6·34,22·0,91·0,95· = 8,19 МПа; kк,з = 1,41 (1+ ) = 1,41 (1+ ) = 34,2. Минимальная стоимость активной части трансформатора имеет место при условиях, определяемых уравнением (3.55). Для рассчитываемого трансформатора
kо,с = 2,36 (см табл.3.7) C = A1/(3B1) = 960,26/(3·648,0) = 0,494; kи,р = 1,13; D = kо,с kи,р x5 + 0,211 x4 – 0,494 x – 1,059 = 0.
Решение этого уравнения дает значение β=1,36, соответствующее минимальной стоимости активной части. По (3.61) и (3.66) находим предельные значения β по допустимым значениям плотности тока и растягивающим механическим напряжениям: xJ ≤ 2,75 = 1,4208; βJ = 1,42084 = 4,076; [по (3.61а)]; xσ ≤ = 1,451; βσ = 1,4514 = 4,43 [по (3.66)]. Оба полученных значения β лежат за пределами обычно применяемых. Масса одного угла магнитной системы по (3.45) Gy = 0,492·104kckяA3x3 = 0,492·104·0,9·1,03·0,23373x3 = 58,21x3. Активное сечение стержня по (3.59) Пc = 0,785 kcA2x2 = 0,785·0,9·0,23372 x2 = 0,03862 x2. Площадь зазора на прямом стыке П''3=Пс= 0,0386х2, площадь зазора на косом стыке П'3 =П'с/ = 0,0386 = 0,0546x2. Для магнитной системы рис. 2.17,6 по (8.33) потери холостого хода с учетом табл. 8.10, 8.12 и 8.14 Px = kп,дpc(Gc + 0,5kп,уGy) + kп,дpя(Gя - 6Gy + 0,5kп,уGy) = = 1,15·1,353(Gc + 0,5·10,18 Gy) + 1,15·1,242(Gя - 6Gy + 0,5·10,18Gy) = 1,556Gc + 1,428Gя + 6,621Gy. Намагничивающая мощность по (8.44) с учетом табл. 8.17 и 8.20 Qx = k'т,д k''т,дqc(Gc + 0,5kт,у kт,плGy) + k'т,д k''т,дqя(Gя - 6Gy + 0,5kт,у kт,плGy) + k''т,дΣqзnзПз; Qx = 1,2·1,956(Gc + 0,5·42,45·1,25Gy) + 1,20·1,07·1,66(Gя - 6Gy + 0,5·42,45·1,25Gy) + 1,07·3200·4·0,0546 х2 + +1,07·25000·3·0,0386х2 = 2,512Gc + 2,131Gя + 116,42Gy + 3845 х2. Далее определяются основные размеры трансформатора d = Ax; d12 = aAx; l = πd12/β; 2a2 = bd; C = d12 + a12 + 2a2 + a22. Весь дальнейший расчет, начиная с определения массы стали магнитной системы, для пяти различных значений β (от 1,2 до 3,6) проводится в форме табл. 3.9. Результаты расчетов, приведенные в табл. 3.8 и 3.9, показаны в виде графиков на рис. 3.9—3.14. Графики на рис. 3.9 для вариантов IМ и IIА позволяют заметить, что с ростом β масса металла обмоток Gо и масса стали в стержнях Gс уменьшаются, а масса стали в ярмах Gя и общая масса стали Gст трансформатора возрастают. Общая стоимость активной части Са,ч (рис. 3.10) с ростом β сначала падает, а затем, пройдя через минимальное значение, снова возрастает. Поскольку с увеличением β при сохранении индукции Вс общая масса стали возрастает, должны возрастать также потери и ток холостого хода, что подтверждается графиками Рх и iо на рис. 3.11. Уменьшение массы металла обмоток с ростом β при сохранении потерь короткого замыкания приводит к уменьшению сечения как всей обмотки, так и каждого ее витка, а следовательно, к увеличению плотности тока и механических напряжений от растяжения в обмотках при коротком замыкании трансформатора. Рост плотности тока J и напряжений от растяжения в проводе обмотки σо для рассчитанного трансформатора виден из графиков, показанных на рис. 3.12. Принципиальные выводы в отношении характера изменения масс активных материалов, стоимости активной части, потерь и тока холостого хода, плотности тока и механических напряжений от растяжения с изменением соотношения размеров β, сделанные на основании графиков рис. 3.9—3.12, являются общими для обоих вариантов расчета трансформатора с медными и алюминиевыми обмотками, с плоской магнитной системой. Рис. 3.9. Изменение массы стали стержней Gс, ярм Gя, магнитной системы Gст и металла обмоток Gо с изменением β для трансформатора типа ТМ-1600/35 с медными (IM) и алюминиевыми обмотками (IА) Рис. 3.10. Изменение относительной стоимости активной части с изменением β для трансформатора типа ТМ-1600/35 с медными (IM) и алюминиевыми обмотками (IА) Рис. 3.11. Изменение потерь и тока холостого хода с изменением β для трансформатора типа ТМ-1600/35 с медными (Iм) и алюминиевыми обмотками (IА) Рис. 3.12. Изменение механических напряжений и плотности тока с изменением β для трансформатора типа ТМ-1600/35 с медными (Iм) и алюминиевыми обмотками (IА) Таблица 3.9. Предварительный расчет трансформатора типа ТМ-1600/35 с плоской шихтованной магнитной системой и алюминиевыми обмотками
Различие в результатах расчета трансформатора с медными и алюминиевыми обмотками можно определить путем сравнения графиков для вариантов IМ и IIА, рассчитанных для одинаковых параметров холостого хода и короткого замыкания при одинаковых конструкциях магнитной системы и обмоток. При переходе от меди к алюминию и при сохранении потерь короткого замыкания вследствие более высокого, чем у меди, удельного сопротивления алюминия радиальные размеры обмоток (а1, а2) и соответствующие коэффициенты (а, b) увеличиваются. Это ведет к увеличению коэффициентов А1, А2, В1, В2 и к увеличению при равных значениях β массы стали по сравнению с этими величинами для трансформаторов, имеющих медные обмотки. Поэтому графики GстA=f(β); PхA==f(β) и iоА =f(β) располагаются выше соответствующих графиков для трансформатора с медными обмотками. Поскольку общий объем и поперечное сечение алюминиевых обмоток больше, чем у медных, графики JА =f(β) и σp=f(β) располагаются ниже, чем у трансформатора с медными обмотками. При этом общий характер всех графиков GстA, GоA, PхA, iоА, jA, σpА остается таким же, как у соответствующих графиков трансформатора с медными обмотками. Ранее было найдено β=2,14, соответствующее минимальной стоимости активной части трансформатора варианта IM с медными обмотками. График Са,ч на рис. 3.10 позволяет установить, что при изменении β в широких пределах - от 1,74 до 2,6 стоимость активной части отличается от минимума не более чем на 1 %, Широкий диапазон значений β, практически обеспечивающий получение минимальной стоимости активной части трансформатора с отклонением от минимума не более чем на 1 %, еще не определяет оптимального значения β. Для выбора оптимального β необходимо обратиться к другим критериям. Графики на рис. 3.11 позволяют определить предельные значения β≤1,71 для заданных потерь холостого хода Рх = 3100 Вт. Предельное значение для заданного значения тока холостого хода iо=l,3 % составляет β≤2,25. Ранее были установлены предельные значения, ограниченные плотностью тока, β≤4,56, и механической прочностью обмоток при коротком замыкании, β≤6,87. Полученные по этим критериям предельные значения β сведены для обоих вариантов в табл. 3.10 и графически представлены на рис. 3.13. На этом рисунке заштрихованы те зоны, в которых данный параметр выходит за пределы, установленные для него ГОСТ или заданными условиями. Выбор значений β
Рис. 3.13. Определение оптимального значения β и диаметра стержня d для трансформатора типа ТМ-1600/35 с медными (а) и алюминиевыми (б) обмотками
Таблица 3.10. Предельные значения β, полученные при предварительном расчете Не нашли, что искали? Воспользуйтесь поиском:
|