![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
метод ньютона второго порядка для решения УУН.Учет нелинейности при моделировании УУН осуществляется через квадратичные члены (слагаемые со вторыми производными) разложения Тейлора (8.22) в виде
Более полный квадратичный учет нелинейности по сравнению с линейным в методе Ньютона способствует значительно лучшей сходимости и уменьшению времени решения уравнений. Поясним это графически (рис. 8.1) на примере нелинейного уравнения с одной неизвестной ω(U). По методу Ньютона (метод касательных), заменив в начальной точке U(0) нелинейное уравнение ω(U) касательной 1 (линейная аппроксимация) и решением линейного уравнения находится приращение ΔU, и значение переменной
вычисляется приращение ΔU2, дающее новое значение переменной Рис. 8.1. Линейная (1) и квадратичная (2) аппроксимации нелинейного уравнения ω(U) в точке U(0). Приращение ΔU2, определяемое из решения квадратичного уравнения (8.34 а), назовем приращением второго порядка. Использование его в рекуррентном выражении итерационного процесса при определенных условиях обеспечивает более быструю и надежную сходимость. Возвращаемся к общему (многомерному) случаю. Основная трудность метода второго порядка заключается в решении системы (8.22) квадратичных уравнений (СКУ)
на каждом шаге вместо СЛУ (8.31)
в методе Ньютона первого порядка. Существуют различные пути алгоритмической реализации метода второго порядка в зависимости от способа получения приращения ΔU из СКУ (8.35). В связи с тем, что применение прямых методов для этой цели невозможно, учет нелинейности УУН посредством квадратичного разложения осуществляется косвенно и связан с дополнительным решением СЛУ в новом итерационном процессе. Обозначим ΔU, как вектор приращения первого порядка, полученный методом Ньютона при решении СЛУ (8.36). Используя ΔU1, результирующее приращение второго порядка можно определить из решения вспомогательной СЛУ
где D — вектор квадратичных добавок в отрезке ряда Тейлора (8.22). Таким образом, одна внешняя итерация решения УУН заключается в последовательном решении СЛУ (8.36) и (8.37). Применительно к уравнению ω(U) = О с одной неизвестной СЛУ (8.37) можно записать отсюда приращение второго порядка
с учетом того, что в методе касательных приращение первого порядка
Другой способ построения итерационной процедуры второго порядка заключается в том [53], что для решения СКУ (8.35) выполняют два шага по методу Ньютона Во-первых, как и в предыдущем случае, определяются поправки ΔU, из решения СЛУ (8.36). Во-вторых, вычисляются невязки СКУ (8.22) в точке U(1) = U(0) + Δ т. е.
Заметим, что выражение справедливо для любого (k-го) шага метода после решения СЛУ (8.36). После корректировки матрицы Якоби:
решается вспомогательная СЛУ:
относительно δU и находится результирующее приращение
Для сравнения с предыдущими способами перепишем СЛУ (8.40) в виде
Для решения уравнения с одной переменной ω(U) = 0 с учетом ΔU1 =-ω(U)/ω’(U) и (8.42) результирующее приращение второго порядка определяют по формуле
Отметим, что, хотя объем вычислений по сравнению с методом Ньютона удваивается, общее время решения благодаря резкому улучшению сходимости уменьшается существенно (в отдельных случаях до 3-5 раз [53]) при близком расходовании памяти ЭВМ. Дополнительный объем вычисления определяется решением СЛУ (8.37) и до-расчетом вторых производных в едином цикле формирования матриц Якоби и Гессе. Заметим, что квадратичная аппроксимация достаточно точно отражает режим ЭС, а эффективность метода в значительной мере зависит от формы записи УУН. Так, уравнения баланса мощности в своем изначальном виде являются квадратичными и полно (без остальных членов) описываются анализируемым отрезком разложения ряда Тейлора (8.22), а потому решения такого уравнения можно получить за одну итерацию. В итоге отметим, что в методе Ньютона второго порядка число внешних итераций
существенно меньше, чем в методе Ньютона. Эффективность метода по времени решения задачи на ЭВМ немаловажна в АСДУ, в проектных и исследовательских задачах, особенно при анализе сильно загруженных ЭС, и возрастает с увеличением размерности задачи, т. е. при расчетах режимов больших и сверхбольших ЭЭС(1—3 тыс. узлов).
Не нашли, что искали? Воспользуйтесь поиском:
|