ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Понятие «интеллектуальной» информационной технологииИскусственный интеллект — одна из новейших наук, появившихся во второй половине XX века на базе вычислительной техники, математической логики, программирования, психологии, лингвистики, нейрофизиологии и других отраслей знаний. Искусственный интеллект — это образец междисциплинарных исследований, где соединяются профессиональные интересы специалистов разного профиля. Само название новой науки возникло в конце 1960-х годов. Исследования в области искусственного интеллекта направлены на создание машин, обнаруживающих поведение, которое у людей называется интеллектуальным. Поскольку машины такого типа почти всегда являются вычислительными, направление «искусственный интеллект» относится к области вычислительной техники. Слово «интеллект» употребляется в различных смыслах, и хотя каждый из нас имеет достаточно определенное субъективное представление о том, что следует понимать под человеческим интеллектом, значительный интерес могут представить следующие определения, приведенные в словаре Вебстера: · способность успешно реагировать на любую, особенно новую ситуацию путем надлежащих корректировок поведения; · способность понимать взаимосвязи между фактами действительности для выработки действий, ведущих к достижению поставленной цели. Эти определения в равной степени могут быть применены как к поведению машины, так и к поведению человека. Понятие интеллекта предполагает наличие многих целей, а также способность к обучению. Искусственный интеллект — это программная система, имитирующая на компьютере мышление человека. Для создания такой системы необходимо изучить процесс мышления человека, решающего определенные задачи или принимающего решения в конкретной области, выделить основные шаги этого процесса и разработать программные средства, воспроизводящие их на компьютере. Следовательно, методы искусственного интеллекта предполагают простой структурный подход к разработке сложных программных систем принятия решений. Информатика и искусственный интеллект имеют тесные взаимосвязи с лингвистикой, психологией и логикой, которые изучают явления, относящиеся к познанию и построению умозаключений. С одной стороны, лингвисты, психологи, специалисты в области математической логики переводят в программы те новые модели, которые они разрабатывают, а с другой — исследователи в области искусственного интеллекта изучают эти модели и пытаются воссоздать на их основе логику эффективных методов решения задач. Считается, что совокупность научных исследований обретает права науки, если выполнены два необходимых условия: · у этих исследований должен быть объект изучения, не совпадающий с объектами, которые изучают другие науки; · должны существовать специфические методы исследования этого объекта, отличные от методов других, уже сложившихся наук. Исследования, которые объединяются термином «искусственный интеллект», имеют специфический объект изучения и специфические методы. Существуют два подхода к созданию искусственного интеллекта: 1) создание ЭВМ с максимально возможными характеристиками (память, оперативная память, быстродействие), получивших название супер-ЭВМ; 2) моделирование работы головного мозга - нейросетевые технологии (бионический подход). Суперкомпьютеры
Согласно определению Госдепартамента США, компьютеры с производительностью свыше 10 000 млн. теоретических операций в секунду (MTOPS), считаются суперкомпьютерами. Другими основными признаками, характеризующими супер-ЭВМ (кроме высокой производительности), являются самый современный технологический уровень (например, GaAs -технология), специфические архитектурные решения, направленные на повышение быстродействия (например, наличие операций над векторами) и цена (обычно свыше 1-2 млн. долл.). При создании суперкомпьютеров возникают естественные вопросы: · какие задачи настолько важны, что требуются компьютеры стоимостью несколько миллионов долларов? · какие задачи настолько сложны, что Pentium II не достаточно? Традиционной сферой применения суперкомпьютеров всегда были научные исследования, физика плазмы и статистическая механика, физика конденсированных сред, молекулярная и атомная физика, теория элементарных частиц, газовая динамика и теория турбулентности, астрофизика. В химии это различные области вычислительной химии: квантовая химия (включая расчеты электронной структуры для целей конструирования новых материалов, например, катализаторов и сверхпроводников), молекулярная динамика, химическая кинетика, теория поверхностных явлений и физика твердого тела, создание лекарств. Естественно, что ряд областей применения находится на стыке соответствующих наук (например, химии и биологии) и пересекается с техническими приложениями. Так, задачи метеорологии, изучения атмосферных явлений, и в первую очередь, задача долгосрочного прогноза погоды, для решения которой постоянно не хватает мощностей современных супер-ЭВМ, тесно связаны с решением ряда перечисленных выше проблем физики. Среди технических проблем, для решения которых используются суперкомпьютеры, можно указать на задачи аэрокосмической и автомобильной промышленности, ядерной энергетики, прогнозирования и разработки месторождений полезных ископаемых, нефтедобывающей и газовой промышленности (в том числе проблемы эффективной эксплуатации месторождений, особенно трехмерные задачи их исследования), и, наконец, конструирование новых микропроцессоров и компьютеров, в первую очередь самих супер-ЭВМ. Суперкомпьютеры традиционно применяются для военных целей. Кроме очевидных задач разработки оружия массового уничтожения и конструирования самолетов и ракет можно упомянуть, например, конструирование бесшумных подводных лодок и др. Самый известный пример — это американская программа СОИ. Анализируя потенциальные потребности в супер-ЭВМ, их существующие приложения можно условно разбить на два класса. К первому классу можно отнести приложения, в которых известно, какой уровень производительности надо достигнуть в каждом конкретном случае (например, долгосрочный прогноз погоды), ко второму — задачи, для которых характерен быстрый рост вычислительных затрат с увеличением размера исследуемого объекта (например, в экономике супер-ЭВМ используются как быстродействующие банки данных крупнейших корпораций и объединений). Не нашли, что искали? Воспользуйтесь поиском:
|