Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Измерение сопротивления постоянному току




Основными параметрами цепей с сосредоточенными постоянными являются: сопротивления резисторов, емкость конденсаторов, тангенс угла диэлектрических потерь конденсаторов, индуктивность и добротность катушек и взаимная индуктивность двух катушек. При выборе метода и средства для измерения этих параметров следует учитывать их зависимость от частоты тока, температуры, влажности, внешних электрических и магнитных полей и т.п.

Весь диапазон измеряемых сопротивлений условно разделен на поддиапазоны: малые сопротивления — 10 нОм... 10 Ом; средние — 10 Ом... 1 МОм; большие — свыше 1 МОм.

Выбор средств и метода измерения зависит от значений сопротивления, условий измерения, требуемой мощности и т.д.

Метод амперметра и вольтметра. Этот метод широко используется при косвенных измерениях разных по величине Rx. Он осно­ван на раздельном измерении тока и напряжения с последующим вычислением сопротивления по закону Ома. Метод прост, надежен, но обладает невысокой точностью, ограниченной классом точности применяемых приборов и методической погрешностью, вносимой этими приборами. В зависимости от величины сопротивления для измерения тока могут быть использованы милли- и микроамперметры, гальванометры; для измерения напряжения — милли- и микровольтметры, гальванометры, но метод сохраняет свое название — метод амперметра—вольтметра. Погрешность измерения — 1,5...2 %.

Мосты постоянного тока (одинарные). Прямые измерения Rx c высокой точностью осуществляют с помощью мостов постоянного тока.

Диапазон измерения: 10 Ом...0,1 ПОм (множитель 1015 — приставка «пета», обозначается как П); классы точности: от 0,005 до 10,0.

При измерении малых сопротивлений на результат измерения существенно влияет сопротивление контактов и подводящих проводов, а также контактная ЭДС. Для уменьшения этого влияния применяют четырехзажимную схему включения исследуемого объекта, а измерение производят при различных направлениях тока. Измерения выполняют двойными мостами постоянного тока. Диапазон измерения: 10 нОм...10Ом, (множитель 10-9 — приставка «нано», обозначается как н); классы точности: 0,01...2,0.

Цифровые мосты. Диапазон измерения: 10 МОм... 1 ТОм, (множитель 106 — приставка «мега», обозначается как М, а множитель Ю12 — приставка «тера», обозначается как Т); классы точности: 0,005...2,0.

Для измерения больших сопротивлений используют одинарные мосты, а при измерении очень больших сопротивлений до 0,01 ЭОм (множитель 1018 — приставка «экса», обозначается как Э) используются баллистические гальванометры. Следует учесть, что при измерении больших сопротивлений токи, протекающие через исследуемые объекты, становятся очень малыми, что предъявляет высокие требования к чувствительности средств измерений.

Для измерения больших сопротивлений могут также быть использованы магнитоэлектрические омметры и омметры-логометры, электронные тераомметры, цифровые омметры.

Электронный логометр (тераомметр). Это прибор, в котором последовательно с измеряемым сопротивлением Rx включается образцовое сопротивление R0. С помощью электронного вольтметра измеряют падение напряжения на Rx (при условии, что R0»Rx), которое пропорционально измеряемому сопротивлению. Шкала при этом будет линейной. При R0<<Rx измеряют падение напряжения на R0. При этом шкала выходного прибора обратно пропорциональна измеряемому сопротивлению и носит гиперболический характер. Обычно это многопредельные приборы с неравномерной шкалой. Классы точности: 1,5; 2,5; 4,0; 6,0; 10,0. Диапазон измерения: 10 Ом... 10 ПОм. Цифровые омметры имеют классы точности 0,005...2,0. Диапазон измерения: 100 Ом... 1 ТОм.

6. Измерение емкости и тангенса угла потерь

Диапазон измерения емкости — 1 пФ...1ОО мкФ (множитель 10-12 приставка «пико», обозначается как п; множитель 10-6— приставка «микро», обозначается как мк). Выбор метода зависит от измеряемой емкости, условий измерения (температуры окружающей среды, частоты и величины питающего напряжения), требуемой точности и наличия средств измерений.

Косвенные измерения — это методы амперметра и вольтметра; амперметра, вольтметра и ваттметра; с помощью баллистического гальванометра. Прямые измерения — это мостовые методы и метод непосредственной оценки.

При измерении емкости и тангенса угла диэлектрических потерь используются:

• мосты переменного тока (с ручным уравновешиванием). Классы точности: 0,1; 0,2; 0,5; 1,0; 2,0; 5,0. Диапазон измерения: емкости — 10 пФ... 1 мкФ; тангенса утла потерь — 0,001... 1;

• цифровые мосты. Классы точности: 0,02; 0,05. Диапазон измерения: емкости — 1 пФ...1ОО мкФ; тангенса угла потерь0,0001... 1;

• фарадметры с электромагнитным и электродинамическим ИМна принципе логометра. Их применяют при грубых измерениях относительно больших емкостей. На этом принципе может быть построен и генриметр. Классы точности: 1,0; 1,5. Диапазон измерения: 1... 10 мкФ.

7. Измерение индуктивности, добротности и взаимной индуктивности

Косвенные измерения — это методы амперметра и вольтметра; амперметра, вольтметра и ваттметра. Прямые измерения — мостовые методы, методы непосредственной оценки.

При измерении индуктивности, добротности и взаимной индуктивности используются:

• мосты переменного тока с ручным уравновешиванием. Классы точности: 0,1; 0,2; 0,5; 1,0; 2,0; 5,0. Диапазон измерения: индуктивности — 1 мкГн... 1000 Гн; добротности — 4,5...200;

• цифровые мосты. Классы точности: 0,02; 0,05. Диапазон измерения индуктивности: 0,1 мкГн... 100 Гн;

• генриметры (на принципе логометров). Классы точности: 1,5;2,5. Диапазон измерений: 1... 10 Гн.

Для измерения взаимной индуктивности М можно использовать все методы, а также баллистический гальванометр или веберметр.

Точность измерения М данными методами определяется точностью используемых средств измерений и методов измерения.

ОБЩИЕ СВЕДЕНИЯ ОБ ИЗМЕРЕНИИ НЕЭЛЕКТРИЧЕСКИХ

ВЕЛИЧИН






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных