Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Энергетический обмен




Энергетический обмен представляет собой наиболее интегральную функцию организма. Любые синтезы, деятельность любого органа, любая функциональная активность неминуемо отражается на энергетическом метаболизме, поскольку по закону сохранения, не имеющему исключений, любой акт, связанный с преобразованием вещества, сопровождается расходованием энергии.

Энергозатраты организма складываются из трех неравных частей базального метаболизма, энергообеспечения функций, а также энергозатрат на рост, развитие и адаптивные процессы. Соотношение между этими частями определяется этапом индивидуального развития и конкретными условиями.

Базальный метаболизм — это тот минимальный уровень энергопродукции, который существует всегда, вне зависимости от функциональной активности органов и систем, и никогда не равен нулю. Базальный метаболизм складывается из трех основных видов энергозатрат: минимальный уровень функций, футильные циклы и репаративные процессы.

Минимальная потребность организма в энергии. Вопрос о минимальном уровне функций достаточно очевиден: даже в условиях полного покоя (например, спокойного сна), когда на организм никакие активирующие факторы не действуют, необходимо поддержание определенной активности головного мозга и желез внутренней секреции, печени и желудочно-кишечного тракта, сердца и сосудов, дыхательных мышц и легочной ткани, тонической и гладкой мускулатуры, и т.п.

Футильные циклы. Менее известно, что в каждой клетке тела непрерывно происходят миллионы циклических биохимических реакций, в результате которых ничего не производится, но на их осуществление необходимо определенное количество энергии. Это так называемые футильные циклы, процессы, сохраняющие «боеспособность» клеточных структур при отсутствии реальной функциональной задачи. Как вращающийся волчок, футильные циклы придают стабильность клетке и всем ее структурам. Расход энергии на поддержание каждого из футильных циклов невелик, но их множество, и в итоге это выливается в достаточно заметную долю базальных энергозатрат.

Репаративные процессы. Многочисленные сложно организованные молекулы, участвующие в метаболических процессах, рано или поздно начинают повреждаться, теряя свои функциональные свойства или даже приобретая токсические. Необходимы непрерывные «ремонтно-восстановительные работы», убирающие из клетки поврежденные молекулы и синтезирующие на их месте новые, идентичные прежним. Такие репаративные процессы происходят постоянно в каждой клетке, так как время жизни любой белковой молекулы обычно не превышает 1—2 нед., а их в любой клетке сотни миллионов. Факторы внешней среды — неблагоприятная температура, повышенный радиационный фон, воздействия токсических веществ и многое другое — способны существенно укоротить жизнь сложных молекул и, как следствие, повысить напряжение репаративных процессов.

Минимальный уровень функционирования тканей многоклеточного организма. Функционирование клетки — это всегда некая внешняя работа. Для мышечной клетки это ее сокращение, для нервной клетки — выработка и проведение электрического импульса, для железистой клетки — выработка секрета и акт секретирования, для эпителиальной клетки — пиноцитоз или другая форма взаимодействия с окружающими ее тканями и биологическими жидкостями. Естественно, что любая работа не может осуществляться без затрат энергии на ее реализацию. Но любая работа, кроме того, приводит к изменению внутренней среды организма, так как продукты жизнедеятельности активной клетки могут быть небезразличны для других клеток и тканей. Поэтому второй эшелон энергозатрат при выполнении функции связан с активным поддержанием гомеостаза, на что порой расходуется весьма значительная часть энергии. Между тем не только состав внутренней среды меняется по ходу выполнения функциональных задач, нередко меняются и структуры, причем часто в сторону разрушения. Так, при сокращении скелетных мышц (даже небольшой интенсивности) всегда происходят разрывы мышечных волокон, т.е. нарушается целостность формы. Организм располагает специальными механизмами поддержания постоянства формы (гомеоморфоз), обеспечивающими скорейшее восстановление поврежденных или измененных структур, но на это опять же расходуется энергия. И, наконец, для развивающегося организма очень важно сохранить главные тенденции своего развития, независимо от того, какие функции приходится активировать в результате воздействия конкретных условий. Поддержание неизменности направления и каналов развития (гомеорез) — еще одна форма энергозатрат при активации функций.

Для развивающегося организма важной статьей энергозатрат является собственно рост и развитие. Впрочем, для любого, в том числе зрелого организма, не- менее энергоемкими по объему и весьма близкими по существу являются процессы адаптивных перестроек. Здесь расходы энергии направлены на активацию генома, деструкцию устаревших структур (катаболизм) и синтезы (анаболизм).

Затраты на базальный метаболизм и затраты на рост и развитие с возрастом существенно снижаются, а затраты на осуществление функций становятся качественно иными. Поскольку методически крайне трудно разделить базальные энергозатраты и расход энергии на процессы роста и развития, их обычно рассматривают совместно под названием «основной обмен».

Возрастная динамика основного обмена. Со времен М.Рубнера (1861) хорошо известно, что у млекопитающих по мере возрастания массы тела интенсивность теплопродукции в расчете на единицу массы снижается; тогда как величина обмена, рассчитанная на единицу поверхности, остается постоянной («правило поверхности»). Удовлетворительного теоретического объяснения эти факты до сих пор не имеют, и поэтому для выражения связи между размерами тела и интенсивностью метаболизма пользуются эмпирическими формулами. Для млекопитающих, включая и человека, в настоящее время чаще всего пользуются формулой М. Клайбера:

М= 67,7·Р 0·75 ккал/сут,

где М — теплопродукция целого организма, а Р — масса тела.

Однако возрастные изменения основного обмена не всегда могут быть описаны с помощью этого уравнения. В течение первого года жизни теплопродукция не снижается, как это требовалось бы по уравнению Клайбера, а остается на одном уровне или даже несколько повышается. Лишь в годовалом возрасте достигается примерно та интенсивность обмена (55 ккал/кг·сут), которая «полагается» по уравнению Клайбера для организма массой 10 кг. Только с 3-летнего возраста интенсивность основного обмена начинает постепенно снижаться, а достигает уровня взрослого человека — 25 ккал/кг · сут — лишь к периоду половой зрелости.

Энергетическая стоимость процессов роста и развития. Нередко повышенную интенсивность основного обмена у детей связывают с затратами на рост. Однако точные измерения и расчеты, проведенные в последние годы, показали, что даже самые интенсивные ростовые процессы в первые 3 месяца жизни не требуют более 7—8 % от суточного потребления энергии, а после 12 месяцев они не превышают 1 %. Больше того, наивысший уровень энергозатрат организма ребенка отмечен в возрасте 1 года, когда скорость его роста становится в 10 раз ниже, чем в полугодовалом возрасте. Значительно более «энергоемкими» оказались те этапы онтогенеза, когда скорость роста снижается, а в органах и тканях происходят существенные качественные изменения, обусловленные процессами клеточных дифференцировок. Специальные исследования биохимиков показали, что в тканях, которые вступают в этап дифференцировочных процессов (например, в мозге), резко увеличивается содержание митохондрий, а следовательно, усиливается окислительный обмен и теплопродукция. Биологический смысл этого явления состоит в том, что в процессе клеточной дифференцировки образуются новые структуры, новые белки и другие крупные молекулы, которых раньше клетка производить не умела. Как и любое новое дело, это требует особых энергетических затрат, тогда как ростовые процессы — это налаженное «серийное производство» белковых и иных макромолекул в клетке.

В процессе дальнейшего индивидуального развития наблюдается снижение интенсивности основного обмена. При этом оказалось, что вклад различных органов в основной обмен с возрастом изменяется. Например, головной мозг (вносящий значительный вклад в основной обмен) у новорожденных составляет 12 % от массы тела, а у взрослого — только 2 %. Так же неравномерно растут и внутренние органы, которые, как и мозг, имеют даже в покое очень высокий уровень энергетического обмена — 300 ккал/кг • сут. В то же время мышечная ткань, относительное количество которой за время постнатального развития почти удваивается, характеризуется очень низким уровнем обмена в покое — 18 ккал/кг • сут. У взрослого на долю мозга приходится примерно 24 % основного обмена, на долю печени — 20%, на долю сердца — 10 % и на скелетные мышцы — 28 %. У годовалого ребенка на долю мозга приходится 53 % основного обмена, вклад печени составляет около 18 %, а на долю скелетных мышц приходится только 8 %.

Обмен покоя у детей школьного возраста. Измерить основной обмен можно только в клинике: для этого требуются особые условия. А вот обмен покоя можно измерить у каждого человека: достаточно, чтобы он был в состоянии натощак и несколько десятков минут находился в мышечном покое. Обмен покоя немного выше, чем основной обмен, но эта разница не принципиальна. Динамика возрастных изменений обмена покоя не сводится к простому понижению интенсивности метаболизма. Периоды, характеризующиеся быстрым снижением интенсивности обмена, сменяются возрастными интервалами, в которых обмен покоя стабилизируется.

При этом обнаруживается тесная связь между характером изменения интенсивности метаболизма и скоростью роста. Столбиками на рисунке показаны относительные годовые приросты массы тела. Оказывается, чем больше относительная скорость роста, тем значительнее в этот период снижение интенсивности обмена покоя.

На представленном рисунке видна еще одна особенность — отчетливые половые различия: девочки в исследованном возрастном интервале примерно на год опережают мальчиков по изменению темпов роста и интенсивности обмена. При этом обнаруживается тесная связь между интенсивностью обмена покоя и темпами роста детей в период полуростового скачка — от 4 до 7 лет. В этот же период начинается смена молочных зубов на постоянные, что также может служить одним из показателей морфофункционального созревания.

В процессе дальнейшего развития снижение интенсивности основного обмена продолжается, причем теперь уже в тесной связи с процессами полового созревания. На начальных стадиях полового созревания интенсивность метаболизма у подростков примерно на 30 % выше, чем у взрослых. Резкое снижение показателя начинается на III стадии, когда активируются гонады, и продолжается вплоть до наступления половой зрелости. Как известно, пубертатный скачок роста также совпадает с достижением III стадии полового созревания, т.е. и в этом случае сохраняется закономерность снижения интенсивности метаболизма в периоды наиболее интенсивного роста.

Мальчики в своем развитии в этот период отстают от девочек примерно на 1 год. В строгом соответствии с этим фактом интенсивность обменных процессов у мальчиков всегда выше, чем у девочек того же календарного возраста. Различия эти невелики (5—10 %), но стабильны на протяжении всего периода полового созревания.

Терморегуляция

Терморегуляция, т. е. поддержание постоянной температуры ядра тела, определяется двумя основными процессами: продукцией тепла и теплоотдачей. Продукция тепла (термогенез) зависит, в первую очередь, от интенсивности обменных процессов, тогда как теплоотдача определяется теплоизоляцией и целым комплексом довольно сложно организованных физиологических механизмов, включающих сосудодвигательные реакции, активность внешнего дыхания и потоотделения. В связи с этим термогенез относят к механизмам химической терморегуляции, а способы изменения теплоотдачи — к механизмам физической терморегуляции. С возрастом меняются как те, так и другие механизмы, а также их значимость в поддержании стабильной температуры тела.

Возрастное развитие механизмов терморегуляции. Чисто физические законы приводят к тому, что по мере увеличения массы и абсолютных размеров тела вклад химической терморегуляции снижается. Так, у новорожденных детей величина терморегуляторной теплопродукции составляет примерно 0,5 ккал/кг • ч • град, а у взрослого человека — 0,15 ккал/кг • ч • град.

Новорожденный ребенок при понижении температуры среды может увеличить теплопродукцию почти до тех же величин, что и взрослый человек, — до 4 ккал/кг • ч. Однако ввиду малой теплоизоляции (0,15 град • м2 • ч/ккал) диапазон химической терморегуляции у новорожденного ребенка очень небольшой — не более 5°. При этом следует учесть, что критическая температура (Th), при которой включается термогенез, составляет для доношенного ребенка +33 °С, ко взрослому состоянию она снижается до +27...+23 °С. Однако в одежде, теплоизоляция которой обычно составляет 2,5 КЛО, или 0,45 град-м2·ч/ккал, величина критической температуры снижается до +20 °С, поэтому ребенок в обычной для него одежде при комнатной температуре находится в термонейтральной среде, т.е. в условиях, не требующих дополнительных затрат на поддержание температуры тела.

Только при процедуре переодевания для предотвращения охлаждения ребенок первых месяцев жизни должен включать достаточно мощные механизмы теплопродукции. Причем у детей этого возраста имеются особые, специфические, отсутствующие у взрослых механизмы термогенеза. Взрослый человек в ответ на охлаждение начинает дрожать, включая так называемый «сократительный» термогенез, т. е. дополнительную теплопродукцию в скелетных мышцах (холодовая дрожь). Особенности конструкции тела ребенка делают такой механизм теплопродукции неэффективным, поэтому у детей активируется так называемый «несократительный» термогенез, локализованный не в скелетных мышцах, а совсем в других органах.

Это внутренние органы (прежде всего, печень) и специальная бурая жировая ткань, насыщенная митохондриями (от того и ее бурый цвет) и обладающая высокими энергетическими возможностями. Активацию теплопродукции бурого жира у здорового ребенка можно заметить по повышению кожной температуры в тех частях тела, где бурый жир расположен более поверхностно, — межлопаточная область и шея. По изменению температуры в этих областях можно судить о состоянии механизмов терморегуляции ребенка, о степени его закаленности. Так называемый «горячий затылок» ребенка первых месяцев жизни связан именно с активностью бурого жира.

В течение первого года жизни активность химической терморегуляции снижается. У ребенка 5—6 мес роль физической терморегуляции заметно возрастает. С возрастом основная масса бурого жира исчезает, но еще до 3-летнего возраста сохраняется реакция самой крупной части бурого жира — межлопаточной. Имеются сообщения, что у взрослых людей, работающих на Севере, на открытом воздухе, бурая жировая ткань продолжает активно функционировать. В обычных условиях у ребенка старше 3 лет активность несократительного термогенеза ограничена, а главенствующую роль в повышении теплопродукции при активации химической терморегуляции начинает играть специфическая сократительная активность скелетных мышц — мышечный тонус и мышечная дрожь. Если такой ребенок оказывается в условиях обычной комнатной температуры (+20 °С) в трусах и майке, у него в 80 случаях из 100 активируется теплопродукция.

Усиление ростовых процессов в период полуростового скачка (5—6 лет) приводит к увеличению длины и площади поверхности конечностей, что обеспечивает регулируемый теплообмен организма с окружающей средой. Это в свою очередь приводит к тому, что начиная с 5,5—6 лет (особенно отчетливо у девочек) происходят значительные изменения терморегуляторной функции. Теплоизоляция тела возрастает, а активность химической терморегуляции существенно снижается. Такой способ регуляции температуры тела более экономичен, и именно он в ходе дальнейшего возрастного развития становится преобладающим. Этот период развития терморегуляции является сенситивным для проведения закаливающих процедур.

С началом полового созревания наступает следующий этап развития терморегуляции, проявляющийся в расстройстве складывавшейся функциональной системы. У 11—12-летних девочек и 13-летних мальчиков, несмотря на продолжающееся снижение интенсивности обмена покоя, соответствующей подстройки сосудистой регуляции не происходит. Лишь в юношеском возрасте после завершения полового созревания возможности терморегуляции достигают дефинитивного уровня развития. Повышение теплоизоляции тканей собственного тела позволяет обходиться без включения химической терморегуляции (т. е. добавочной теплопродукции) даже при снижении температуры среды на 10—15 °С. Такая реакция организма, естественно, более экономична и эффективна.

Пищеварение

Чтобы стать доступными для метаболических превращений в клетках, пищевые вещества должны пройти предварительную обработку в желудочно-кишечном тракте. Только всосавшись в кровь и лимфу из кишечника, белки, жиры, углеводы, витамины, минеральные соли и вода включаются в обмен веществ. Все эти процессы составляют главную функцию пищеварительной системы.

Возрастные изменения строения и функций пищеварительной системы неразрывно связаны с особенностями жизнедеятельности организма на каждом из этапов онтогенеза, т.е. с энергетическими и пластическими потребностями, с особенностями питания.

Ротовая полость. Пищеварение начинается с полости рта, где происходит первичная механическая и ферментативная обработка пищи. Первые ферменты, с которыми встречается пища, содержатся в слюне. Секреция слюны у ребенка начинается сразу после рождения, хотя при питании молоком нет необходимости смачивать пищу и гидролизировать отсутствующие в молоке полисахариды. Слюна в этот период играет роль герметизатора ротовой полости при сосании — иначе ребенок заглатывал бы большие количества воздуха, которые раздували бы его желудок и кишечник. С переходом на питание твердой пищей количество образующейся слюны увеличивается. Масса трех пар слюнных желез новорожденного составляет 6 г. В течение первых 6 месяцев жизни она увеличивается в 3 раза и почти в 5 раз в течение первых 2 лет.

После окончания периода молозивного вскармливания в слюне появляется лизоцим, который до того поступал в организм новорожденного с молоком матери. Таким образом, иммунологическая, защитная функция слюны формируется уже в раннем постнатальном онтогенезе. Следует отметить, что, будучи «входными воротами» для множества инфекций, ротоглоточная область обильно снабжена лимфоидной тканью. Так, две небные миндалевидные железы — язычная и носоглоточная — образуют почти полное кольцо лимфоидной ткани, окружающей глотку. Наибольшего развития эти железы достигают в период от 1 года до 5—6 лет, после чего постепенно инволюируют.

Новорожденный секретирует 0,6—6 мл слюны в час, при сосании это количество может возрастать до 24 мл/ч. Секреция слюны у детей школьного возраста колеблется от 12 до 18 мл/ч, причем уже у 7-летних детей количество вырабатываемой слюны практически такое же, как у взрослых. У детей до 7—10 лет слюна имеет слабощелочную реакцию. После начала полового созревания слюна становится слабокислой.

Слюна состоит более чем на 99 % из воды, в которой растворены органические и неорганические вещества. Органические вещества составляют более половины сухого остатка слюны, среди них удается выявить девять белковых компонентов, в том числе альбумины, иммуноактивные альфа-, бета- и гамма-глобулины, а также ферменты лизоцим и амилазу. Лизоцим — это защитный белок, уничтожающий болезнетворные бактерии. Амилаза — пищеварительный фермент, расщепляющий гигантские полимерные цепи молекул крахмала на более мелкие фрагменты, состоящие из коротких цепочек по 1—2—3 мономера глюкозы.

Активность амилазы слюны резко возрастает в течение 1-го года жизни, достигая практически тех же значений у годовалого ребенка, что и у взрослого. Наибольшее содержание амилазы в слюне наблюдается в возрасте от 2 до 7 лет, после 13 лет оно заметно снижается. Такая динамика не случайна. Дети раннего возраста могут усваивать большое количество углеводов, которые необходимы для питания их интенсивно развивающегося мозга.

Желудок. Желудок среднего новорожденного весит 6 г, а площадь его внутренней поверхности составляет примерно 39 см2. По мере увеличения размеров тела абсолютная масса и поверхность слизистой желудка постепенно возрастают. Относительная масса желудка (в % от массы тела) постепенно увеличивается на протяжении первого года жизни ребенка, затем происходит резкое Увеличение в связи с переходом на смешанное питание. В целом Увеличение относительных размеров желудка продолжается до 5—7 лет, т.е. до полуростового скачка. У взрослого человека относительная величина массы желудка оказывается несколько ниже, чем у детей, ведь ему уже не нужно так много пищи для обеспечения его энергетических и пластических потребностей. Вес желудка взрослого человека составляет свыше 150 г, а площадь слизистой — более 500 см2.

Секреторная функция желудка. Вырабатываемый железами желудка пищеварительный сок содержит ферменты пепсин и трипсин, которые расщепляют молекулы белков пищи на составные части — аминокислоты. В дальнейшем аминокислоты всасываются в кровь и поступают к клеткам тела с током крови. Для того чтобы пепсин и трипсин проявляли высокую активность, необходима кислая среда. Поэтому специальные клетки желудка вырабатывают соляную кислоту. Еще одна группа клеток вырабатывает слизь, которой покрыта вся слизистая желудка, чтобы его не могли разъесть собственные ферменты и кислота.

У новорожденных натощак кислотность желудочного сока очень низкая. Однако через несколько минут после кормления железы желудка начинают-активно вырабатывать свой секрет, в том числе — соляную кислоту, и рН быстро снижается. Переваривание молочного белка казеина происходит в желудке новорожденного весьма эффективно. Фермент химозин обеспечивает створаживание молока, попавшего в желудок. Другой фермент — липаза — способствует перевариванию жиров, содержащихся в женском молоке. Кроме того, некоторое количество липазы содержится в самом женском молоке, вырабатываемом грудной железой матери, что еще более облегчает задачу усвоения жиров грудным младенцем. В коровьем молоке липаза практически отсутствует, поэтому при искусственном вскармливании смесями на основе коровьего молока жиры усваиваются значительно медленнее и хуже.

Кислотность желудочного сока у детей до завершения полового созревания понижена по сравнению со взрослыми. Это может служить причиной несколько сниженной резистентности (сопротивляемости) детей к различного рода желудочно-кишечным инфекциям.

Наиболее существенные возрастные изменения в секреции желудочного сока происходят до 7 лет, однако на этом процесс развития пищеварительной функции не заканчивается. Лишь после достижения половой зрелости завершается формирование морфофункциональных свойств пищеварительной системы. В подростковом возрасте формируется тип желудочной секреции, тесно связанный с типом конституции. В этом же возрасте нередко начинают проявляться разнообразные отклонения от нормы в деятельности желудочно-кишечного тракта, среди которых типичны повышенная и пониженная секреторная активность желудка.

Активность ферментов желудочного сока. Основная функция желудка — начальный гидролиз белков — осуществляется двумя желудочными ферментами: пепсином и гастриксином. Максимальная активность пепсина проявляется при рН 1,5—2,5. Оптимум активности гастриксина соответствует рН 3,0—3,2.

Активность желудочного сока новорожденных детей низкая. По мере развития активность желудочного сока изменяется в соответствии с характером вскармливания, увеличиваясь по мере уменьшения доли грудного молока в пищевом рационе ребенка и перевода его на искусственное питание.

В период грудного вскармливания пищеварение у детей протекает главным образом не в полости желудка, а прямо на поверхности выстилающих его клеток (так называемое «мембранное пищеварение»). Огромное количество специальных выростов — микроскопических ворсинок — обеспечивает быстрое переваривание и очень полное всасывание пищи. При переводе детей на смешанное вскармливание роль полостного гидролиза постепенно увеличивается.

Дальнейшее развитие секреторной активности желудка протекает весьма медленно и в большой мере зависит от характера питания, т. е. от режима, этнических и семейных традиций. Различия между мальчиками и девочками начинают проявляться в возрасте около 8 лет, причем у мальчиков в 10, а у девочек в 9 лет наблюдается напряжение желудочного пищеварения, и этот возраст является переломным моментом в становлении желудочной секреции. У подростков 13—14 лет активность желудочных ферментов резко падает. Причины этого явления не вполне ясны, хотя очевидно, что здесь сказывается влияние процессов полового созревания. К 16—17 годам секреция желудочных желез и активность ферментов подростка достигают уровня взрослого человека. Следует отметить, что уже в детском и подростковом возрасте повышенная и пониженная кислотность желудочного сока становятся весьма распространенным явлением: только 1/3 детей обладают нормальной кислотностью. Это говорит о наличии устойчивых типов желудочной секреции уже в детском возрасте, что необходимо учитывать при организации режима питания детей. Здесь следует проявлять больше гибкости и согласовывать действия взрослых (родителей и воспитателей) с запросами самого ребенка.

Моторная функция желудка. Важной составной частью функции желудочно-кишечного тракта является его способность продвигать пищевой комок в направлении от ротового к анальному отверстию. Эвакуация переваренной пищи из желудка необходима как для дальнейшей ее обработки ферментами и всасывания питательных веществ, так и для освобождения желудка в ожидании следующей порции пищи. Первые автоматические движения кишечника у эмбрионов человека отмечаются уже на 7-й неделе внутриутробного развития. Для изучения моторной функции желудка используется наружная электрогастрография, позволяющая записывать биотоки желудка с поверхности тела.

У доношенных новорожденных регистрируется низкая амплитуда электрогастрограммы. На первом году жизни величина потенциалов электрогастрограммы существенно нарастает, достигая максимальных значений у детей 1—3 лет, затем в возрасте от 3 до 7 лет снижается и остается стабильной у детей старше 7 лет. Частота перистальтических сокращений у новорожденных детей также оказывается наименьшей, затем нарастает в течение первых 3 лет жизни и стабилизируется уже с 3-летнего возраста.

Относительная гиперкинезия желудочно-кишечного тракта у детей от 1 года до 3 лет, т. е. в период перехода на смешанное и дефинитивное питание, может иметь важное функциональное значение. Активные сокращения желудка могут способствовать механической обработке пищи. Перемешивание улучшает условия всасывания, а также активизирует процессы пристеночного пищеварения, которое в этом возрасте играет еще очень важную роль.

Нейрогуморальная регуляция пищеварения. Моторная функция желудочно-кишечного тракта регулируется в основном нервными влияниями, причем существенную роль в этом играет мозжечок. Возбуждающие и тормозящие импульсы от мозжечка передаются по блуждающим и чревным нервам. В раннем онтогенезе постепенно усиливаются тормозные влияния нервных центров, а пороги раздражения снижаются. Иными словами, моторная функция желудочно-кишечного тракта по мере развития испытывает все большее влияние центральных контролирующих структур.

Управление процессами желудочного пищеварения осуществляется сложным механизмом нейрогуморальной регуляции. Большое значение придается гормону пищеварения — гастрину, который секретируется особыми клетками слизистой оболочки желудка и верхних отделов тонкого кишечника. Секреция гастрина возбуждается ингредиентами пищи, щелочами, механическим растяжением выходного отдела желудка, холинэргической нервной импульсацией, а тормозится соляной кислотой. Последнее обстоятельство имеет важное значение для саморегуляции желудочного кислотовыделения. Гастрин регулирует кислотность желудочного сока, стимулирует секрецию пепсина, а также деятельность поджелудочной железы. Содержание гастрина в крови у детей намного больше, чем у взрослых, причем сильнее всего снижение выделения гормона происходит уже в подростковом возрасте. Это связано с возрастным увеличением чувствительности тканей к гастрину, поэтому его требуется меньше для достижения того же эффекта.

Поджелудочная железа. В период до 8 лет поджелудочная железа у детей имеет относительно более крупные размеры, чем у взрослых. Возможно, это связано с относительно высокой потребностью детей в углеводах и толерантностью к ним, ведь гормон поджелудочной железы инсулин определяет способность всех клеток тела усваивать глюкозу из крови. Однако в качестве пищеварительной железы поджелудочная синтезирует многокомпонентный панкреатический сок, поступающий по специальному протоку в двенадцатиперстную кишку, т.е. в самый верхний отдел кишечника.

Около 72 % от общего количества белков панкреатического сока составляют протеолитические ферменты, т.е. ферменты, предназначенные для переваривания белков. Протеолитическая активность секрета поджелудочной железы уже в первые месяцы жизни ребенка находится на довольно высоком уровне, который постепенно еще увеличивается Печень — центральный орган межуточного метаболизма и продуцент важного пищеварительного сока — желчи. Относительная величина массы печени постепенно снижается с возрастом. Это снижение является одним из факторов возрастного снижения интенсивности энергетического обмена, поскольку интенсивность окислительного обмена в печени выше, чем во всех других тканях организма.

Пищеварительная функция печени состоит в выработке желчи — комплекса ферментов, предназначенного для эмульгирования жиров, входящих в состав пищи. Только после того, как Жиры превратятся в эмульсию — некое подобие раствора, на них может подействовать фермент липаза, который должен расщепить молекулу жира на глицерин и жирные кислоты. Всасывание нерасщепленных молекул жира в кровь или лимфу невозможно.

Для каждого акта пищеварения требуется довольно значительное количество желчи. Она вырабатывается непрерывно, но не поступает сразу в двенадцатиперстную кишку, а собирается вначале в желчном пузыре, который анатомически входит в состав печени. Выброс накопившейся там желчи зависит от характера пищи и происходит после того, как пищевой комок достиг начального отдела тонкого кишечника. Емкость желчного пузыря ребенка в возрасте до 3 мес равна 3,2 см3, в 1—2 года — 8,5 см3, в 6—9 лет — 33,6 см3, у взрослых — 50—65 см3. С возрастом увеличивается способность желчного пузыря концентрировать желчь. Это, отчасти, связано и с тем, что скорость опорожнения пузыря в детском возрасте выше.

Печень ребенка выделяет желчь с самого первого дня после рождения. Следует учесть, что пища ребенка этого возраста на 100 % состоит из высокодиспергированного продукта — молока, содержащего эмульгированный жир. У здорового взрослого человека в сутки выделяется от 500 до 1200 мл желчи, т.е. 10—11 мл/кг массы тела. У подростков объем выделяемой желчи мало отличается от взрослых.

Кишечное пищеварение. В тонком кишечнике продолжается процесс переваривания пищи, причем здесь же и происходит всасывание многих продуктов гидролиза белков, жиров и углеводов. Этому способствует анатомическое устройство кишечника. У взрослого человека внутренняя поверхность кишки имеет многочисленные складки и достигает 0,7 м2. При этом на каждом квадратном сантиметре поверхности находится 2—3 тыс. ворсинок, которые увеличивают площадь поверхности до 4—5 м2, что в 2—3 раза превышает поверхность тела человека. Каждая из ворсинок покрыта еще множеством микроворсинок, что многократно увеличивает общую поверхность всасывания. С возрастом существенно изменяется анатомическая длина тонкого и толстого кишечника, а также относительные величины этих показателей. Наиболее интересны изменения длины кишечника по отношению к длине туловища: максимальная величина этого показателя регистрируется у детей 1—4 лет, т.е. в период перехода на смешанное и взрослое питание. В этот же возрастной период у детей наиболее развито пристеночное пищеварение, для которого важна площадь внутренней поверхности тонкой кишки. Относительная длина толстого кишечника в отличие от таковой тонкого кишечника продолжает увеличиваться у детей вплоть до достижения ими взрослости, что, вероятно, связано с увеличением грубых, трудно перевариваемых видов пищи в рационе человека с возрастом.

Возрастные особенности пищеварительной функции кишечника человека изучены мало, что связано с очевидными трудностями методического характера. Тем не менее многочисленные исследования, проведенные на высших животных, позволяют представить себе общую картину онтогенеза кишечного пищеварения.

В раннем постнатальном онтогенезе млекопитающих, когда единственной пищей является материнское молоко, секреция основных ферментов, обеспечивающих пищеварение в желудке и кишечнике, находится на очень низком уровне. Естественно, это ограничивает возможности полостного пищеварения. По мнению академика А. М. Уголева, для усвоения молока в этот период вполне достаточно пристеночного пищеварения. При переходе от молочного питания к дефинитивному меняется не только набор ферментов, но и их распределение вдоль кишечной трубки. На фоне смешанного питания формируются новые взаимоотношения между полостным и пристеночным пищеварением, которые, по-видимому, могут меняться в зависимости от характера пищи. В онтогенезе человека соответствующие изменения происходят в течение первых 6—12 мес в после рождения.

Процессы возрастного развития всасывательной функции кишечника слабо изучены. Известно, что как сахара, так и аминокислоты способны транспортироваться через кишечную мембрану уже у плодов, у новорожденных эта способность быстро нарастает, достигая высоких значений через несколько дней после рождения. Липиды всасываются в слизистой кишечника в раннем постнатальном периоде сильнее, чем у взрослых. Также более интенсивно в раннем возрасте происходит всасывание некоторых витаминов (например, В12). Физиологический смысл этих особенностей кишечного пищеварения в раннем возрасте очевиден.

В толстом кишечнике всасывается главным образом вода, и формируются каловые массы. Однако в ограниченном количестве здесь может всасываться глюкоза. Иногда этим пользуются в лечебных целях (клизмы). Разнообразные расстройства кишечника, вызванные кишечными бактериями или вирусами, резко снижают проницаемость толстого кишечника для воды, и в результате образуются жидкие испражнения. В некоторых случаях (дизентерия, холера) это может приводить к тяжелому обезвоживанию организма и опасно для жизни.

Для детей характерна повышенная проницаемость кишечной стенки. Из-за этого иногда в кровь попадают нерасщепленные белковые молекулы, которые могут вызывать иммунный ответ организма. Отсюда частое проявление кожных аллергических реакций и разного рода токсикозов у детей до 7—8 лет в ответ на поступление в организм тех или иных видов пищи. В частности, детям раннего возраста не рекомендуется употреблять цитрусовые и другие экзотические фрукты, ибо они нередко вызывают аллергические реакции. Любопытно, что в теплых странах (например, в США), где цитрусовые распространены особенно широко, врачи не рекомендуют давать детям яблочный сок по той же причине. Из этого примера ясно, что сенсибилизация (возникновение чувствительности к тому или иному веществу) к тем или иным аллергенам в большой мере зависит от местных условий и является не врожденной, а адаптивной реакцией.

Как и желудок, кишечник по всей своей длине имеет гладкомышечный слой, обеспечивающий его периодические спастические сокращения — перистальтику. Эти сокращения, происходящие каждые 5—6 с, способствуют лучшему перевариванию и всасыванию пищевых веществ, а также продвижению пищевого комка в одном направлении. У детей перистальтика кишечника выражена слабее, чем у взрослых, в том числе — из-за меньшего развития мускульного слоя кишки.

Рвотный рефлекс. Механическое или химическое раздражение слизистой желудка или тонкого кишечника может привести к рвоте. Это защитный рефлекс, позволяющий организму избавиться от причины, вызвавшей раздражение. Некоторые запахи и вкусовые ощущения также могут приводить к рвоте: обычно это бывает связано с предыдущими предъявлениями данного раздражителя и протекает по механизму условного рефлекса. Центр рвоты находится в продолговатом мозге, и его раздражение может быть также следствием алкогольного отравления или перевозбуждения вестибулярного аппарата (укачивание). Рвотный рефлекс реализуется как сильные перистальтические сокращения кишечника, желудка и пищевода в обратном направлении. Эти сокращения гладких мышц пищеварительного тракта сочетаются с рефлекторными резкими сокращениями поперечно-полосатых мышц брюшной стенки и диафрагмы. В результате содержимое верхнего отдела кишечника и желудка выбрасывается через рот наружу. Это порой спасает организм от тяжелого отравления. Рвоту можно вызвать искусственно, механически раздражая рефлексогенную зону — корень языка. Отвары некоторых трав обладают рвотным действием, что используется для промывания желудка в случаях отравления (обычно в сочетании с содовым раствором). В процессе рвоты важно следить, чтобы рвотные массы не попали в дыхательные пути. У грудных младенцев часто после кормления бывает срыгивание части полупереваренного молока, которое по механизму мало отличается от рвоты. По этой причине ребенка нельзя укладывать в постель сразу после кормления, необходимо некоторое время подержать его на руках в вертикальном положении или в наклонной позе затылком вверх. В такой позиции срыгнутое молоко не попадет в дыхательные пути. Если же ребенка сразу после кормления положить на спину, то он может захлебнуться своей отрыжкой. Это одна из наиболее распространенных причин внезапной смерти младенцев первых месяцев жизни.

Питание

Все необходимые организму человека вещества, которые используются для производства энергии и строительства собственного тела, поступают из окружающей среды. По мере взросления ребенок к концу первого года жизни все в большей мере переходит на самостоятельное питание, а после 3 лет питание ребенка мало чем отличается от питания взрослого.

Структурные компоненты пищевых веществ. Пища человека бывает растительного и животного происхождения, но независимо от этого она состоит из одних и тех же классов органических соединений — белков, жиров и углеводов. Собственно, эти же классы соединений составляют в основном и тело самого человека. В то же время различия между животной и растительной пищей есть, и довольно важные.

Углеводы. Наиболее массовый компонент растительной пищи — это углеводы (чаще всего в виде крахмала), составляющие основу энергетического обеспечения человеческого организма. Для взрослого человека требуется получать углеводы, жиры и белки в соотношении 4:1:1. Поскольку у детей обменные процессы идут интенсивнее, причем главным образом — за счет метаболической активности мозга, который питается почти исключительно углеводами, дети должны получать больше углеводной пищи — в соотношении 5:1:1. В первые месяцы жизни ребенок не получает растительной пищи, зато в женском молоке относительно очень много углеводов: оно примерно такое же жирное, как коровье, содержит в 2 раза меньше белков, но зато в 2 раза больше углеводов. Соотношение углеводов, жиров и белков в женском молоке составляет примерно 5:2:1. Искусственные смеси для вскармливания детей первых месяцев жизни приготавливаются на основе Разбавленного примерно вдвое коровьего молока с добавлением Фруктозы, глюкозы и других углеводов.

Жиры. Растительная пища редко бывает богата жирами, однако содержащиеся в растительных жирах компоненты крайне необходимы для организма человека. В отличие от животных жиров, растительные содержат много так называемых полиненасыщенных жирных кислот. Это длинноцепочечные жирные кислоты, в структуре которых имеются двойные химические связи. Такие молекулы используются клетками человека для строительства клеточных мембран, в которых они выполняют стабилизирующую роль, защищая клетки от вторжения агрессивных молекул и свободных радикалов. Благодаря этому свойству растительные жиры обладают противораковой, антиоксидантной и противорадикальной активностью. Кроме того, в растительных жирах обычно растворено большое количество ценных витаминов группы А и Е. Еще одно достоинство растительных жиров — отсутствие в них холестерина, который способен откладываться в кровеносных сосудах человека и вызывать их склеротические изменения. Животные жиры, напротив, содержат значительное количество холестерина, но практически не несут в себе витаминов и полиненасыщенных жирных кислот. Тем не менее животные жиры также необходимы организму человека, поскольку они составляют важный компонент энергетического обеспечения, а кроме того, содержат липокинины, которые помогают организму усваивать и перерабатывать свой собственный жир.

Белки. Растительные и животные белки также существенно различаются по своему составу. Хотя все белки состоят из аминокислот, некоторые из этих важнейших «кирпичиков» могут синтезироваться клетками человеческого организма, а другие не могут. Этих последних немного, всего 4—5 видов, но их ничем нельзя заменить, поэтому они называются незаменимыми аминокислотами. Растительная пища почти не содержит незаменимых аминокислот — только бобовые и соевые культуры имеют в своем составе небольшое их количество. Между тем в мясе, рыбе и других продуктах животного происхождения эти вещества представлены широко. Нехватка некоторых незаменимых аминокислот резко отрицательно сказывается на динамике ростовых процессов и на развитии многих функций, причем наиболее существенно на развитии мозга и интеллекта ребенка. По этой причине дети, длительно страдающие от недоедания в раннем возрасте, нередко остаются на всю жизнь умственно неполноценными. Вот почему детей ни в коем случае нельзя ограничивать в употреблении животной пиши: как минимум, молока и яиц, а также рыбы. По-видимому, с этим же обстоятельством связано то, что дети до 7 лет, согласно христианским традициям, не должны соблюдать пост, т. е. отказываться от животной пищи.

Макро- и микроэлементы. В пищевых продуктах содержатся почти все известные науке химические элементы, за исключением, быть может, радиоактивных и тяжелых металлов, а также инертных газов. Некоторые элементы, такие, как углерод, водород, азот, кислород, фосфор, кальций, калий, натрий и некоторые другие, входят в состав всех пищевых продуктов и поступают в организм в очень большом количестве (десятки и сотни граммов в сутки). Такие вещества принято относить к макроэлементам. Другие содержатся в пище в микроскопических дозах, поэтому их называют микроэлементами. Это йод, фтор, медь, кобальт, серебро и многие другие элементы. К микроэлементам нередко относят железо, хотя его количество в организме довольно велико, так как железо играет ключевую роль в переносе кислорода внутри организма. Недостаток любого из микроэлементов может стать причиной серьезного заболевания. Нехватка йода, например, ведет к развитию тяжелого заболевания щитовидной железы (так называемый зоб). Нехватка железа приводит к железодефицитной анемии — форме малокровия, которая отрицательно сказывается на работоспособности, темпах роста и развития ребенка. Во всех подобных случаях необходима коррекция питания, включение в рацион продуктов, содержащих недостающие элементы. Так, йод содержится в большом количестве в морской капусте — ламинарии, кроме того, в магазинах продается йодированная поваренная соль. Железо содержится в говяжьей печени, яблоках и некоторых других фруктах, а также в детских ирисках «Гематоген», продающихся в аптеках.

Витамины, авитаминоз, болезни обмена веществ. Витамины — это средние по размеру и сложности органические молекулы, которые обычно не вырабатываются клетками организма человека. Мы вынуждены получать витамины с пищей, так как они необходимы для работы многих ферментов, регулирующих биохимические процессы в организме. Витамины — очень нестойкие вещества, поэтому приготовление пищи на огне почти полностью уничтожает содержавшиеся там витамины. Только сырые продукты содержат витамины в заметном количестве, поэтому главным источником витаминов для нас являются овощи и фрукты. Хищные звери, а также коренные жители Севера, питающиеся почти исключительно мясом и рыбой, получают достаточное количество витаминов из сырых продуктов животного происхождения. В жареном и вареном мясе и рыбе витаминов практически нет.

Нехватка витаминов проявляется в различных болезнях обмена веществ, которые объединяются под названием авитаминозы. Витаминов сейчас открыто уже около 50, и каждый из них отвечает за свой «участок» обменных процессов, соответственно и болезней, вызванных авитаминозом, насчитывается несколько десятков. Цинга, бери-бери, пеллагра и другие болезни этого рода широко известны.

Витамины делятся на две большие группы: жирорастворимые и водорастворимые. Водорастворимые витамины в большом количестве содержатся в овощах и фруктах, а жирорастворимые — чаще в семенах и орехах. Оливковое, подсолнечное, кукурузное и другие растительные масла — важные источники многих жирорастворимых витаминов. Однако витамин D (противорахитный) содержится преимущественно в рыбьем жире, который добывают из печени трески и некоторых других морских рыб.

В средних и северных широтах к весне в сохранившейся с осени растительной пище количество витаминов резко убывает, и многие люди — жители северных стран — испытывают авитаминоз. Преодолевать это состояние помогают соленые и квашеные продукты (капуста, огурцы и некоторые другие), в которых высоко содержание многих витаминов. Кроме того, витамины вырабатываются микрофлорой кишечника, поэтому при нормальном пищеварении человек снабжается многими важнейшими витаминами группы В в достаточном количестве. У детей первого года жизни микрофлора кишечника еще не сформирована, поэтому они должны получать в качестве источников витаминов достаточное количество материнского молока, а также фруктовых и овощных соков.

Суточная потребность в энергии, белках, витаминах. Количество съедаемой за день пищи напрямую зависит от скорости обменных процессов, поскольку пища должна полностью компенсировать потраченную на все функции энергию. Хотя интенсивность обменных процессов с возрастом у детей старше 1 года снижается, увеличение массы их тела приводит к нарастанию суммарных (валовых) энергозатрат. Соответственно увеличивается и потребность в основных питательных веществах.

Избыточное количество витаминов и минеральных веществ, поступивших с пищей, обычно не приносит вреда, так как эти вещества легко удаляются из организма с испражнениями. Однако регулярное чрезмерное употребление некоторых витаминов и минералов может привести к развитию обменных заболеваний.

Энергетическая ценность продуктов питания. Окисление в организме 1 г белка позволяет высвободить 17,17 кДж (4,1 ккал) энергии, 1 г жира - 38,94 кДж (9,3 ккал), 1 г углеводов - 17,17 кДж (4,1 ккал). Как видно из этого сопоставления, жиры обладают наибольшей энергетической ценностью: она примерно в два раза выше, чем у белков и углеводов. Однако это сугубо термодинамический расчет, не учитывающий реалий биосистемы. С точки зрения функции, наиболее эффективным обычно является использование углеводов. Дело в том, что при окислении жиров в митохондриях значительная часть энергии рассеивается в виде тепла, тогда как окисление углеводов позволяет получать АТФ с очень высоким КПД. По этой причине жиры активно окисляются в организме только в двух случаях: 1) когда холодно и нужно произвести добавочное количество тепла, чтобы согреться; 2) когда выполняется очень длительная (десятки минут) физическая работа весьма умеренной мощности. Что касается окисления белков для энергетических нужд, то это вообще нерационально с точки зрения клетки. Гораздо выгоднее использовать аминокислоты, из которых состоят белки, не в качестве топлива, а в качестве строительных блоков. Белки используются клеткой для окисления только в крайнем случае, когда не хватает углеводов и жиров или когда необходимо уничтожить «поломанные» белковые молекулы, ставшие опасными из-за своей токсичности.

Условность расчетов калорической «стоимости» диеты. Примитивно-термодинамический подход к оценке калорийности (энергетической ценности) съедаемой пищи, к сожалению, наиболее обычен в литературе, касающейся вопросов питания. Существуют даже разнообразные табличные, карманные и иные «счетчики калорий», которые якобы позволяют человеку контролировать потребление пищи. На самом деле все такие расчеты не слишком точны, поскольку исходят из представления об организме человека как о тепловой машине. Между тем уже давно доказано, что организм во много раз более эффективен, чем тепловая машина. Кроме того, организм — это весьма тонко регулирующаяся система со множеством обратных связей, и примитивные расчеты здесь часто оказываются ошибочными. В качестве наглядного примера можно рассмотреть хорошо известный физиологам, но обычно не учитываемый диетологами эффект, который старомодно называется «специфически-динамическое действие пищи». Еще в начале XX в. было установлено, что любая съеденная пища приводит к более или менее значительному увеличению энергопродукции, которое наблюдается через 30—60 мин после приема пищи и может длиться несколько часов. Организм нуждается в затратах энергии на усвоение пищи, причем наиболее «дорогостоящим» оказалось усвоение белков, менее «дорогим» — усвоение углеводов, и самым «дешевым» — жиров. Оказалось также, что дети тратят на усвоение питательных веществ существенно больше энергии, чем взрослые, — иногда до 50 % от полученного с пищей запаса энергии. Эти затраты энергии снижаются, если пища состоит из смеси белков, жиров и углеводов. Точная причина специфически динамического действия пищи до сих пор не выяснена, хотя установлено, что в этой реакции участвуют гормоны, выделяемые «сытым» желудком. Наиболее вероятной представляется гипотеза, согласно которой поступившие с пищей питательные вещества откладываются «про запас» в имеющиеся для этого депо: жир — в жировой ткани, белки — в мышцах, углеводы — в мышцах и печени (в виде гликогена). Если же имеющиеся депо заполнены, то избыток пищевых веществ просто «сжигается».

Возрастные особенности выделительной функции. Важным условием эффективной деятельности почек является адекватный уровень их кровоснабжения. В условиях покоя у новорожденных в почки поступает всего 5 % минутного объема крови, тогда как у взрослых — 20—25 %. Значительное увеличение почечного кровоснабжения наблюдается в течение 8—10 нед. после рождения. Уже к 3-му году жизни суммарный почечный кровоток практически достигает уровня взрослого человека.

Новорожденные при любом водном режиме выводят гипотоническую (малоконцентрированную) мочу. В основе низкой концентрирующей способности их почек лежат: 1) морфологическая незрелость почек; 2) положительный азотистый баланс; 3) нечувствительность почек к антидиуретическому гормону. При искусственном вскармливании коровьим молоком, содержащим больше солей и белков по сравнению с женским, концентрирующая способность развивается раньше, чем при грудном питании.

Из-за сниженной способности концентрировать мочу ребенок затрачивает примерно вдвое больше воды, чем взрослый, на выведение одного и того же количества осмотически активных веществ. Вместе с высокими потерями воды через кожу и легкие это создает известную напряженность водного баланса ребенка. При грудном вскармливании эта напряженность выражена меньше, чем при вскармливании коровьим молоком. Замена женского молока эквивалентным количеством коровьего увеличивает нагрузку на почки в 4,5 раза. Соответственно, возрастает и потребность в воде. Способность к реабсорбции у детей раннего возраста снижена по сравнению со взрослыми. Так, канальцевая реабсорбция жидкости у новорожденных составляет 78—89 %, а у взрослых — 98—99,5 %.

Созревание осморегулирующих механизмов у человека проходит несколько этапов, наиболее важные вехи на этом пути — возраст 7—8 мес., 2—3 года и 10—11 лет. Тем не менее относительная напряженность водно-солевого обмена, особенно в экстремальных ситуациях, отмечается в течение всего периода детства.

Регуляция кислотно-щелочного равновесия. Почки участвуют в поддержании кислотно-щелочного равновесия благодаря способности секретировать водородный ион, выделяя кислую мочу (рН менее 4,4). Ребенок уже с первых дней жизни может выделять кислую мочу, однако эта способность у него ниже, чем у взрослого.

Так, почка взрослого выводит за 8 ч 20 % от общего количества введенной кислоты, а детская — только 10 %. Однако в норме почки ребенка способны удовлетворительно поддерживать это равновесие, особенно при грудном вскармливании.

Возрастные особенности водно-солевого обмена. Формирование гомеостатических функций почек отражает их способность к сохранению водно-солевого баланса организма, который определяется количеством жидкости в различных средах, их ионным составом, осмолярностью и кислотно-щелочным равновесием.

Наиболее распространенным и важным соединением в организме человека является вода. В водной среде осуществляются все химические, обменные и транспортные процессы, она служит универсальным растворителем продуктов питания и обмена. На долю жидкости приходится 58—80 % массы тела.

К моменту рождения ребенка содержание воды в организме составляет 75—80 % его массы и зависит от степени зрелости. У недоношенных количество жидкости больше в связи с незрелостью регуляторных механизмов, повышенной гидрофильностью тканей и незначительным содержанием жира. С возрастом относительное количество ее уменьшается, особенно интенсивно в первые годы жизни. К 3—5 годам общее количество жидкости (в %) достигает уровня взрослого человека.

Вода в организме находится в трех секторах: сосудистом (плазма крови), интерстициальном (межтканевая жидкость) и внутриклеточном (клеточная плазма). Распределение жидкости в них зависит от возраста. По мере развития организма относительный объем внеклеточной жидкости уменьшается главным образом за счет интерстициального пространства, а внутриклеточный сектор возрастает в основном благодаря увеличению количества клеток.

Несмотря на то что в раннем возрасте на единицу массы тела приходится больше воды, детский организм существенно хуже взрослого противостоит потерям жидкости. Такое напряжение водного баланса в определенной степени связано с тем, что у детей интенсивность обмена веществ и площадь поверхности тела, приходящиеся на единицу массы, относительно больше, чем у взрослых. В результате этого потери воды через легкие и кожу у новорожденных в 2 раза превышают аналогичные потери у взрослых.

С возрастом изменяется и количество жидкости, экскретируемой почками. Хотя абсолютная скорость мочеотделения увеличивается, однако в расчете на 1 кг массы тела (или другую стандартную величину) наблюдается снижение суточного диуреза с 90 — 110 мл/кг у новорожденных до 60—80 мл/кг в 2—3 года и 20— 30 мл/кг у взрослых. На выведение одного и того же количества органических и неорганических веществ новорожденные дети затрачивают в 2—3 раза больше воды, чем взрослые. Именно это обстоятельство и диктует повышенную потребность ребенка в воде.

У детей по сравнению со взрослыми существенно выше суточный обмен воды. У новорожденных он составляет примерно половину объема внеклеточной жидкости (700 мл из 1400 мл), тогда как в зрелом возрасте — 1/7 (200 из 1400 мл). Кроме того, у детей фиксированный резерв жидкости весьма мал, вода более подвижна в связи с недоразвитием соединительной ткани. У новорожденных и грудных детей не развито чувство жажды, что также обусловливает их склонность к обезвоживанию.

В целом у детей водный обмен характеризуется высокой лабильностью и напряженностью, а при патологических состояниях значительно быстрее, чем у взрослых, развиваются его нарушения.

Регуляция водно-солевого обмена. Поддержание осмотической концентрации, ионного состава и объема жидкостей внутренней среды организма обеспечивается деятельностью специальных нейрогормональных систем, в основе которых лежат осмо-, ионо- и волюморегулирующие рефлексы. Информационным звеном этих рефлексов являются специфические осмо-, ионо- и волюморецепторы, широко представленные в организме человека. Особое значение имеют рецепторы, локализованные в кровеносных сосудах и ткани печени, поскольку они первыми улавливают отклонения физико-химических показателей крови при всасывании воды, солей и питательных веществ из желудочно-кишечного тракта. В управлении гомеостатической деятельностью почек участвуют гипоталамус, ретикулярная формация и кора больших полушарий. Активность почки регулируется двумя гормонами гипофиза — вазопрессином и окситоцином. Наряду с этими гипофизарными нейропептидами, значительную роль в регуляции почечных процессов играют минерало- и глюкокортикоиды коры надпочечников, гормоны щитовидной и паращитовидной желез, катехоламины, инсулин, эпифизарные факторы, простагландины.

В процессе онтогенеза происходит постепенное созревание различных элементов функциональной системы, регулирующей водно-солевой гомеостаз, благодаря чему увеличиваются резервные возможности организма по поддержанию водно-электролитного равновесия. Морфофункциональное развитие почек происходит в течение длительного времени. Раньше всего возникает способность системы регулировать содержание воды в организме. Поэтому уже к 7 годам детский организм достаточно эффективно устраняет избыток воды и экономит жидкость при ее недостатке. Что же касается ионной регуляции, то она формируется только к 10—11 годам. При этом у детей одного и того же календарного возраста не всегда одинаковый уровень развития функций почек. То есть у разных детей-одногодок уровень развития гомеостатической системы может соответствовать более старшему или более младшему возрасту.

Мочеиспускание. Поступающая по мочеточнику моча собирается в мочевом пузыре — гладкомышечном мешковидном органе, внутренние стенки которого выстланы эпителиальной тканью, а выход из него запирается специальным кольцеобразным мышечным сфинктером. Скопившаяся в мочевом пузыре моча растягивает его стенки и раздражает расположенные там механорецепторы. Дуга мочеиспускательного рефлекса замыкается через спинномозговой центр, расположенный в крестцовом отделе. Импульсы от спинного мозга заставляют сфинктер расслабиться, а гладкую мускулатуру стенок пузыря сократиться. В результате моча выливается наружу через мочеиспускательный канал. Однако все взрослые млекопитающие, в том числе человек, умеют сознательно управлять актом мочеиспускания. Это обеспечивается контролем со стороны коры головного мозга на основе условных рефлексов. Обычно эти рефлексы у детей формируются к 2 годам настолько прочно, что спонтанное мочеиспускание не происходит ни днем, ни ночью. Однако разного рода стрессы, переутомление, переохлаждение, нарушения сна, неправильный двигательный режим, а также чрезмерные физические и психические напряжения могут приводить к ослаблению этого рефлекса даже у детей школьного возраста вплоть до полового созревания. Тогда возникает ночное недержание мочи — энурез. Дети нередко очень чувствительны к этому своему «недостатку», хотя их вины в этом обычно нет. Ни в коем случае нельзя упрекать и тем более наказывать ребенка в подобной ситуации. Помочь в преодолении этого функционального нарушения могут врачи — психоневролог, уролог и невропатолог.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных