ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Квантовый эффект ХоллаВпервые необычный (англ. unconventional) квантовый эффект Холла наблюдали в работах, где было показано, что носители в графене действительно обладают нулевой эффективной массой, поскольку положения плато на зависимости недиагональной компоненты тензора проводимости соответствовали полуцелым значениям холловской проводимости Квантовый эффект Холла (КЭХ) может использоваться как эталон сопротивления, потому что численное значение наблюдаемого в графене плато, равное
Рис. 6. a) Квантовый эффект Холла в обычной двумерной системе. b) Квантовый эффект Холла в графене. В современных образцах графена (лежащих на подложке) вплоть до 45 Т невозможно наблюдать дробный квантовый эффект Холла, но наблюдается целочисленный квантовый эффект Холла, который не совпадает с обычным. В работе[54] наблюдается спиновое расщепление релятивистских уровней Ландау и снятие четырёхкратного вырождения для наинизшего уровня Ландау вблизи точки электронейтральности. Для объяснения этого эффекта предложено несколько теорий, но недостаточное количество экспериментального материала не позволяет выбрать среди них правильную. Благодаря отсутствию запрещённой зоны в графене в структурах с верхним затвором можно сформировать непрерывный p-n переход, когда напряжение на верхнем затворе позволяет инвертировать знак носителей, задаваемый обратным затвором в графене, где концентрация носителей никогда не обращается в ноль (кроме точки электронейтральности). В таких структурах тоже можно наблюдать квантовый эффект Холла, но из-за неоднородности знака носителей значения холловских плато отличаются от приведённых выше. Для структуры с одним p-n переходом значения квантования холловской проводимости описываются формулой
где Для структуры с двумя p-n переходами[57] соответствующие значения холловской проводимости равны
Интересные факты
Рис. 7. Для получения нанотрубки (n, m) графитовую плоскость надо разрезать по направлениям пунктирных линий и свернуть вдоль направления вектора R · В статье, опубликованной 10 ноября 2005 года в журнале Nature, Константин Новосёлов и Андрей Гейм утверждают, что электрические заряды в графене ведут себя как релятивистские частицы с нулевой эффективной массой. Эти частицы, известные как безмассовые фермионы Дирака, описываются уравнением Дирака, хотя в эффекте Шубникова-де Гааза (осцилляции магнетосопротивления) наблюдаемые осцилляции соответствуют конечной циклотронной массе. · Так как закон дисперсии для носителей идентичен закону для безмассовых частиц, графен может выступать в качестве экспериментальной лаборатории для квантовой электродинамики. · Квантовый эффект Холла в графене может наблюдаться даже при комнатной температуре благодаря большой циклотронной энергии, при которой температурное размытие функции распределения Ферми-Дирака меньше этой энергии · При сворачивании графена в цилиндр (см. рис. 7) получается одностенная нанотрубка. В зависимости от конкретной схемы сворачивания графитовой плоскости, нанотрубки могут обладать или металлическими, или полупроводниковыми свойствами. · В графене отсутствует вигнеровская кристаллизация. · В графене нарушается приближение Борна-Оппенгеймера (адиабатическое приближение), гласящее, что в силу медленного движения ионных остовов решётки их можно включить в рассмотрение как возмущение, известное как фононы решётки, — основное приближение, на котором строится зонная теория твёрдых тел. · За новаторские эксперименты с графеном Нобелевская премия 2010 года по физике присуждена Андрею Гейму иКонстантину Новосёлову. · Термоэлектрический эффект для графена превосходит резистивный омический нагрев, что в перспективе позволит создание на его базе схем, не требующих охлаждения. · В двойном слое графена электроны ведут себя как жидкий кристалл
Не нашли, что искали? Воспользуйтесь поиском:
|