Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Конструктивная логика А. А. Маркова. Проблема конструктивного понимания логических связок, в частности отрицания и импликации, требует применения в ло­гике специальных точных формальных языков




Проблема конструктивного понимания логических связок, в частности отрицания и импликации, требует применения в ло­гике специальных точных формальных языков. В основе конст­руктивной математической логики А. А. Маркова лежит идея ступенчатого построения формальных языков. Сначала вводится формальный язык Яо , в котором предложения выражаются по

определенным правилам в виде формул; в нем имеется определе­ние смысла выражения этого языка, т. е. семантика. Правила вывода позволяют, исходя из верных предложений, всегда полу­чать верные предложения.

В конструктивной математике формулируются теоремы суще­ствования, утверждающие, что существует объект, удовлетворя­ющий таким-то требованиям. Под этим подразумевается, что построение такого объекта потенциально осуществимо, т. е. мы владеем способом его построения. Это конструктивное понима­ние высказываний о существовании отличается от классического. В конструктивной математике и логике иной является и трактов­ка дизъюнкции, которая понимается как осуществимость указа­ния ее верного члена. «Осуществимость» означает потенциаль­ную осуществимость конструктивного процесса, дающего в ре­зультате один из членов дизъюнкции, который должен быть истинным. Классическое же понимание дизъюнкции не предпола­гает нахождения ее истинного члена.

Новое понимание логических связок требует новой логики. Мы считаем утверждение А. А. Маркова о неединственности логики верным и весьма глубоким: «В самой идее неединствен­ности логики, разумеется, нет ничего удивительного. В самом деле, с какой стати все наши рассуждения, о чем бы мы ни рассуждали, должны управляться одними и теми же законами? Для этого нет никаких оснований. Удивительным, наоборот, было бы, если бы логика была единственна»39.

В конструктивную математическую логику А. А. Марков вводит понятие «разрешимое высказывание» и связанное с ним понятие «прямое отрицание». В логике А. А. Маркова имеется и другой вид отрицания — усиленное отрицание, относящееся к так называемым полуразрешимым высказываниям.

Кроме материальной и усиленной импликации, при установ­лении истинности которых приходится заботиться об истинности посылки и заключения, А. А. Марков вводит дедуктивную имп­ликацию, определяемую по другому принципу. Дедуктивная имп­ликация «если А, то В» выражает возможность выведения В из А по фиксированным правилам, каждое из которых в применении к верным формулам даст верные формулы. Всякое высказывание, выводимое из истинного высказывания, будет истинным.

Через дедуктивную импликацию А. А. Марков определяет редукционное отрицание (reductio ad absurdum). Редукционное отрицание высказывания А (сформулированного на данном язы­ке) понимается как дедуктивная импликация «если А, то Л», где через Л обозначен абсурд. Это определение отрицания соответ­ствует обычной практике рассуждений математика: математик отрицает ту посылку, из которой вытекает абсурд. Для установ­ления истинности редукционного отрицания высказывания не требуется вникать в смысл этого высказывания. Высказывание, для которого установлена истинность редукционного отрицания, не может быть истинным.

Эти три различных понимания отрицания не вступают в конф­ликт друг с другом, они согласованы, что, по мнению А. А. Маркова, даст возможность объединить все эти понимания отрицания.

Показательно такое обстоятельство: А. А. Марков строит свои конструктивные логические системы для обоснования конст­руктивной математики таким образом, что у него получается не одна законченная система, а целая иерархия систем. Это система языков Я 0, Я 1 Я 2, Я 3, Я 4, Я 5,..., Я N (где N — натуральное число) и объемлющего их языка Я ω после Я ω строится язык Я ω`.

Итак, мы склонны думать, что развивающуюся конструктив­ную логику и математику невозможно вместить в одно формаль­ное исчисление, для этого нужна система, состоящая из целой иерархии систем, в которой будет иерархия отрицаний.

Проблемами конструктивной логики и теории алгоритмов занимается российский математик Н. М. Нагорный и др.

 

МОДАЛЬНЫЕ ЛОГИКИ

 

В классической двузначной логике рассматривались простые и сложные ассерторические суждения, т. е. такие, в которых не установлен характер связи между субъектом и предикатом. На­пример: «Морская вода — соленая» или «Дождь то начинал хле­стать теплыми крупными каплями, то переставал».В модальных суждениях раскрывается характер связи между субъектом и предикатом или между отдельными простыми суж­дениями в сложном модальном суждении. Например: «Необ­ходимо соблюдать правила уличного движения» или «Если будет дуть попутный ветер, то, возможно, мы приплывем в гавань до наступления темноты».

Модальными являются суждения, которые включают модаль­ные операторы (модальные понятия), т. е. слова «необходимо», «возможно», «невозможно», «случайно», «запрещено», «хорошо» и многие другие (см. гл. Ш, § 6 «Деление суждений по модаль­ности»). Модальные суждения рассматриваются в специальном направлении современной формальной логики — в модальной логике.

Изучение модальных суждений имеет длительную и много­гранную историю. Мы отметим лишь некоторые из ее аспектов. Модальности в логику были введены Аристотелем. Термин «воз­можность», по Аристотелю, имеет различный смысл. Возмож­ным он называет и то, что необходимо, и то, что не необходимо, и то, что возможно. Исходя из понимания модальности «возмож­ность», Аристотель писал о неприменимости закона исключен­ного третьего к будущим единичным событиям.

Наряду с категорическим силлогизмом Аристотель исследует и модальный силлогизм, у которого одна или обе посылки и заключение являются модальными суждениями. Я. Лукасевич в книге «Аристотелевская силлогистика с точки зрения современ­ной формальной логики» две главы посвящает аристотелевой модальной логике предложений и модальной силлогистике Ари­стотеля40. Аристотель рассматривает модальную силлогистику по образцу своей ассерторической силлогистики: силлогизмы подразделяются на фигуры и модусы, неправильные модусы отбрасываются с помощью их интерпретации на конкретных терминах.

Согласно Аристотелю, случайность есть то, что не необходи­мо и не невозможно, т. е. р — случайно означает то же самое, что и р — не необходимо и р — не невозможно, но Лукасевич отмечает, что аристотелевская теория случайных силлогизмов полна серьезных ошибок41. Итог Лукасевича такой: пропозицио­нальная модальная логика Аристотеля имеет огромное значение для философии; в работах Аристотеля можно найти все элемен­ты, необходимые для построения полной системы модальной логики; однако Аристотель исходил из двузначной логики42, в то время как модальная логика не может быть двузначной. К идее многозначной логики Аристотель подошел вплотную, рассуждая о «будущем морском сражении». Следуя Аристотелю, Лукасевич в 1920 г. построил первую многозначную (трехзначную) логику. Так осуществляется связь модальных и многозначных логик.

Значительное внимание разработке модальных категорий уделяли философы в Древней Греции и особенно Диодор Крон, рассматривавший модальности в связи с введенной им времен­ной переменной. В средние века модальным категориям также уделялось большое внимание. В XIX в. категорию вероятности разрабатывали Дж. Буль и П. С. Порецкий.

Возникновение модальной логики как системы датируется 1918 годом, когда американский логик и философ Кларенс Ир­винг Льюис (1888—1964) в работе «A Survey of Symbolic Logic» сформулировал модальное исчисление, названное им впоследст­вии 53.

В книге «Symbolic logic», написанной им совместно с К. Лэнгфордом в 1932 г., он сформулировал еще пять модальных логи­ческих систем, связанных с 53 и между собой. Это системы 51, S2, 54, 55, S6.

Приведем описание модальной системы S I43

I. Исходные символы. 1) р, q, r и т. д. — пропозициональные переменные; 2) ~ р — отрицание р; 3) — конъюнкция р и q; 4) — строгая импликация льюисовской системы; 5)

модальный оператор возможности (возможно р); 6) p = q — строгая эквивалентность, p = q равносильно

П. Аксиомы системы S 1:

1) 2) 3) 4) 5) 6) 7)

Аксиома 5 может быть выведена из остальных, как было показано позднее. Так как конъюнкция связывает «сильнее», чем импликация, то скобки можно опустить или заменить их точ­ками, как это сделано у Льюиса.

III. Правила вывода S 1.

1. Правило подстановки. Любые два эквивалентных друг дру­гу выражения взаимозаменимы.

2. Любая правильно построенная формула может быть под­ставлена вместо р, или q, или r и т. д. в любом выражении.

3. Если выводимо р и выводимо q, то выводимо

4. Если выводимо р и выводимо то выводимо q.

Льюис построил модальную пропозициональную логику S 1 в виде расширения немодального (ассерторического) пропозици­онального исчисления (сокращенно АПИ). При этом основные черты 51 и других его исчислений были скопированы с фор­мализованной логической системы Principia Mathematica Рассела и Уайтхеда, сформулированы с помощью понятий, только терминологически отличающихся от понятий, использованных в Principia Mathematica. Кроме Рассела и Уайтхеда идеи клас­сической логики развивали многие современные математические логики, например американский логик и математик С. Клини44. Исчисления Льюиса построены аксиоматически по образцу Principia, по аналогии с Principia Льюис доказывает рад специфи­ческих теорем.

В классической двузначной логике логическое следование ото­ждествляется с материальной импликацией, допускаются такие формы вывода: 1) т. е. истинное суждение следует из любого суждения («истина следует откуда угодно») и 2) т. е. из ложного суждения следует любое суждение («из лжи следует все, что угодно»). Это противоречит нашему содержательному, практическому пониманию логического следо­вания, поэтому данные формулы, а также и некоторые другие, и соответствующие им принципы логического следования назы­ваются парадоксами материальной импликации.

Льюис создал свои новые системы с целью избежать этих парадоксов и ввести новую импликацию, названную им «строгой импликацией», такую, чтобы логическое следование представ­лялось не чисто формально, а по смыслу (содержательно) и новая импликация была бы ближе к союзу естественного языка «если, то». В строгой импликации Льюиса невозможно утверждать антецедент, т. е. р, и отрицать консеквент, т. е. q 45.

В системах Льюиса были устранены парадоксы материальной импликации, т. е. формулы 1) и 2) стали невыводимыми, но появились парадоксы строгой импликации. К ним относятся, например, такие формулы: 3) 4)

Итак, отождествлять строгую импликацию Льюиса со следованием нельзя.

С целью исключить парадоксы строгой импликации Льюиса немецкий математик и логик Ф. В. Аккерман (1896—1962) по­строил свою систему модальной логики. Он ввел так называемую сильную импликацию, которая не тождественна строгой имп­ликации Льюиса, и модальные операторы Аккермана и Льюиса также не являются тождественными. Аккерман все логические термины и модальные операторы определяет через сильную имп­ликацию так: NA равносильно МА равносильно Здесь А — любая правильно построенная формула систе­мы Аккермана: N — оператор необходимости; М — оператор возможности; — отрицание А; знак обозначает сильную импликацию. Знак — логическая постоянная, обозначающая «абсурдно». Эта постоянная в свою очередь определяется так: где & обозначает конъюнкцию. И последняя формула читается так: из противоречия, т. е. А и не-А, следует абсурд. В системе Аккермана не выводятся формулы, структурно подобные парадоксам, ни материальной импликации, ни строгой импликации.

Системы Льюиса и Аккермана являются бесконечнозначными. В отличие от этих систем первоначально построенные систе­мы Лукасевича являются конечнозначными: одна — трехзначная (1920), другая — четырехзначная (1953). В четырехзначной систе­ме Лукасевича46 также обнаружены парадоксы. Главный из них состоит в том, что ни одно аподиктическое предложение не истинно, т. е. ни одно суждение вида Lot (где L обозначает необходимость, а α — любая формула) не является истинным. Это означало бы, что необходимых суждений нет, т. е. модаль­ный оператор «необходимо» упраздняется. Лукасевич пишет: «Любое аподиктическое предложение должно быть отброше­но»47. Сам Лукасевич считает это достоинствοм своей системы, а понятие «необходимость» — псевдопонятием. С такой точкой зрения, конечно, согласиться нельзя.

Интерпретации модальных логик различны. Известный авст­рийский философ и логик Р. Карнап (1891—1970) пытался ин­терпретировать модальные понятия (операторы) с помощью так называемой теории «возможных миров», в которой допускается наличие множества «миров», один из которых — действитель­ный, реальный мир, а остальные — возможные миры. Необходи­мым объявляется то, что существует во всех мирах, возмож­ным — то, что существует хотя бы в одном.

Р. Карнап в 1946 г., используя понятие «описание состояния», предложил интерпретацию модальных операторов, в основе ко­торой лежала идея различия возможного и действительного ми­ров.

В ином направлении шел финский логик Я. Хинтикка. Крити­чески переосмыслив введенное Карнапом понятие «описание со­стояния», он разрабатывал технику «модальных множеств», т. е. миров (1957), — оригинальную семантическую концепцию воз­можных миров. Разработка семантики возможных миров для модальных логик продолжается.

Разнообразными проблемами модальной логики занимается американский логик Р. Фейс48.

В настоящее время разработаны многие виды модальностей (см. табл. 7).

Теорией модальных логик и построением новых модальных логических систем в нашей стране активно занимаются логики А. А. Ивин49, Я. А. Слинин50, О. Ф. Серебряников, В. Т. Пав­лов и др.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных