Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Исправление наследственных нарушений




В то время как в начале XX века генетика делала первые шаги, большим вниманием пользовалась идея улучшения человеческого рода, или евгеника (см. гл. 15). Когда люди узнали механизм наследственности, стало возможным на генном уровне исправлять фенотип наследственных нарушений. Микробиолог Джошуа Леденберг назвал исправление фенотипа евфеникой. В некоторых случаях «ев-фенические» процедуры не требуют знания молекулярной основы нарушений: например, очки для близоруких, хирургическое исправление «волчьей пасти», удаление лишнего пальца или переливание крови больному гемофилией. Самый яркий пример евфеники — применение инсулина для лечения диабета. Открытие инсулина в 1922 году Бантингом и Вестом привело к увеличению продолжительности и улучшению качества жизни больных, в крови которых недостает этого гормона. Но евфеническое вмешательство может идти и гораздо дальше, особенно после расшифровки механизма работы генов.

Диетическое питание при фенилкетонурии

В 1930-х годах мать двух умственно отсталых детей из Норвегии заметила, что от них исходит своеобразный неприятный запах. Она показала детей врачу-биохимику по фамилии Феллинг, который сделал разнообразные анализы. Обнаружилось, что их моча окрашивала хлорид железа в ярко-зеленый цвет в результате химической реакции с фенилпировиноградной кислотой, которая в мочи нормальных людей отсутствует. Так было открыто наследственное нарушение метаболизма — фенилкетонурия.

Обычно определенный фермент (фенилаланин-гидроксилаза) превращает аминокислоту фенилаланин в тирозин (см. рис. 6.1). У гомозигот по аутосомному рецессивному гену р такой реакции не происходит, поэтому фенилаланин у них накапливается в крови и переходит в мочу; у детей с генотипом рр содержание фенилаланина в крови превышает норму почти в 30 раз. Избыточный фенилаланин по другому метаболическому пути превращается в фенилпировиноградную кислоту, довольно токсичное вещество, разрушающее развивающиеся клетки детского мозга. Как следствие дети с генотипом рр обычно страдают умственной недоразвитостью, которая служит одним из основных признаков фенилкетонурии.

Данное заболевание встречается с частотой один раз на 10 тысяч рождений. В Северной Америке с 1955 по 1964 год использовались особые пеленки с хлоридом железа, помогающие выявить это наследственное нарушение. Однако оказалось, что такой способ слишком неточен, потому что удавалось выявить лишь 50—60% детей с нарушениями. Поэтому анализ на фенилкетонурию проводится непосредственно при рождении (как правило, берется кровь из пятки) с помощью промокательной бумаги. Затем засохшее пятнышко крови переносится в чашку Петри с питательным раствором, бактериями Bacillus subtilis и раствором b-2 тиенилаланина, который действует как ингибитор, то есть замедляет рост бактерий. Фенилаланин сильнее ингибитора, потому вокруг образца крови с повышенным содержанием фенилаланина образуется «облачко» бактерий. Такая простая процедура позволяет быстро и надежно определить наследственное заболевание.

После первого анализа детей с повышенным содержанием фенилаланина проверяют еще раз и при необходимости назначают им особую диету с очень низким содержанием фенилаланина. Все время питаться такими продуктами — не самое большое удовольствие, поэтому, когда дети вырастают, их постепенно переводят на обычное питание, причем признаки заболевания при этом не проявляются. Получается, что придерживаться особой диеты следует только в первые несколько лет жизни, и умственное развитие детей происходит нормально. Однако иногда считают, что умственное развитие может замедляться у детей с любым генотипом, рожденных от матери с фенилкетонурией. Обычно такие женщины выходят замуж за нормальных мужчин и, следовательно, у них рождаются дети-гетерозиготы, которые, казалось бы, должны быть нормальными. Однако еще в организме матери плод получает слишком много фенилаланина, с которым слабо развитый организм ребенка пока не может справиться, и поэтому мозгу наносится некоторый ущерб.

В Великобритании массовая диагностика на фенилкетонурию в качестве эксперимента началась в 1950-х годах. По мере совершенствования методов диагностика приобретала все более широкий характер. В 1964 году в США началась кампания за обязательный анализ на фенилкетонурию, и в течение двух лет анализы стали обязательными в 43 штатах. Теперь только в США ежегодно на фенилкетону-рию проверяется более 3 млн новорожденных. Результаты диагностики показали, что ежегодно при расходах 5—10 млн долларов выявляется только 183 случая фенилкетонурии, и некоторые специалисты считают это расточительством. Однако Роберт Гатри, ведущий эксперт и сторонник обязательной диагностики, утверждает:

Расходы на выявление одного случая фенилкетонурии (при условии, что проводится 10 тыс. анализов, каждый стоимостью от 50 центов до 4 долларов) составляют сумму до 50 тыс. долларов; но если не проводить диагностику, то о больном следует заботиться всю его оставшуюся жизнь (продолжительность которой в среднем составляет 50 лет, а ежегодные расходы на содержание в лечебном учреждении составляют по самым скромным оценкам 5 тыс. долларов ежегодно). В эти 250 тыс. долларов еще не входят дополнительные расходы. О том, что испытывают родители безнадежно больных детей, и вовсе говорить не приходится. Если не обсуждать человеческие ценности, а хотя бы задаться экономическим вопросом, что лучше — потратить 50 тыс. долларов сейчас или в пять раз больше впоследствии?2

При условии совмещения в одном анализе от одного ребенка диагностики нескольких наследственных заболеваний экономический эффект станет еще больше.

Химическая коррекция серповидноклеточной анемии

Некоторые исследователи пытаются разработать методы лечения серповидноклеточной анемии, от которой, по приблизительным оценкам, страдают около 2 млн людей во всем мире (и три на каждую тысячу детей афроамериканцев). Это наследственное нарушение характеризуется ранней смертностью и сильными болями при закупорке сосудов. При этом ткани организма недостаточно снабжаются кислородом. В конце 1960-х группа молекулярных биологов из Университета Рокфеллера предположила, что стабилизировать гемоглобин серповидных клеток может цианат, похожий на углекислый газ. Эксперименты на клетках, взятых из крови больных, к изумлению ученых, показали, что это химическое вещество прочно связывается с гемоглобином и предотвращает изменение формы после удаления кислорода, не влияя на способность кровяных клеток переносить кислород. Однако испытания на людях показали, что цианат слишком ядовит для повседневного использования, поэтому разрабатываются альтернативные методы.

В ходе контрольных испытаний отмечено, что частоту болезненных кризисов понижает гидрокси-мочевина. По всей видимости, она обладает множественным действием, в том числе слегка повышает синтез гемоглобина на эмбриональной стадии развития, которую серповидноклеточная мутация не затрагивает. Другие ученые экспериментируют с бутиратом, который ускоряет синтез гемоглобина эффективнее гидроксимочевины. Поскольку один из критических факторов болезни заключается в том, что серповидные клетки прилипают к стенкам сосудов, некоторые ученые сосредоточили свои исследования именно на этом. Одна исследовательская группа заявила, что полаксамер-188 уменьшает вязкость крови и понижает вероятность прилипания клеток к стенкам сосудов. Другие ученые на животных проверяют антитела, которые блокируют синтез белков, ответственных за прилипание кровяных клеток друг к другу.

Более экстремальное эвфеническое вмешательство при серповидноклеточной анемии — пересадка костного мозга, но при этом существует опасность смертельного исхода, и нелегко найти подходящих доноров. В конце концов, эвфеника — это всего лишь «первая линия» обороны при лечении наследственных нарушений. В последующих главах мы обсудим генную терапию, то есть непосредственное изменение самой ДНК ненормального гена.

Перспективы эвфеники

Несмотря на то, что в наши дни можно исправлять последствия некоторых наследственных нарушений, эвфеника все еще находится в зачаточном состоянии. В последующие годы число заболеваний, регулируемых подобным образом, несомненно, возрастет. Правда, «вылеченные» больные, достигшие зрелого возраста, по-прежнему передают свои гены детям, увеличивая тем самым частоту ненормальных аллелей в популяции. Некоторые исследователи заявляют, что тем самым мы превратимся в генетически неполноценный вид, в котором индивиды будут целиком зависеть от достижений современной медицины и науки. Верно ли это?

Совершенно очевидно, что частота некоторых наследственных нарушений растет. Некоторые из них определяются не одним, а многими генами и их сложным взаимодействием. Например, врожденный пилорический стеноз представляет собой сужение перехода от желудка в тонкую кишку и встречается с частотой от одного до четырех случаев на 1000 успешных родов. До начала XX века младенцы с этим пороком почти всегда умирали, но в 1912 году была разработана простая операция, позволявшая исправлять дефект и вести при этом нормальный образ жизни. Когда такие люди сами становятся родителями, почти в 70 случаях из 1000 у них рождаются дети с этим же пороком, что в 20 раз больше обычного соотношения. Среди других относительно частых врожденных пороков можно назвать сахарный диабет, заячью губу, волчью пасть и пороки сердца, частота появления которых при более широком распространении методов коррекции, казалось бы, будет только увеличиваться в последующих поколениях. Однако, как будет показано в гл. 15, высказывать мнение о неизбежном ухудшении человеческого генофонда следует с крайней осторожностью. Большинство вредных рецессивных аллелей переносят гетерозиготные носители. По этой причине, например, удвоение частоты вредных аллелей не приведет к удвоению частоты фактических заболеваний. Для удвоения частоты наследственных пороков требуется на удивление долгое время — сотни или тысячи лет. В то же время разрабатываются молекулярные методы определения гетерозиготных носителей многих наследственных пороков, зависящих от одного гена, и некоторых пороков, определяемых многими генами. Успехи в этой области позволят людям добровольно выбирать себе количество детей (или вовсе отказаться от них) и тем самым снизить частоту вредных аллелей в популяции. Генная терапия, описываемая в гл. 12, предлагает некоторую надежду в отдаленном будущем, но в непосредственном будущем определяющим методом коррекции многих наследственных заболеваний станут эвфенические меры.

Успех эвфеники зависит от изменения окружающей среды. И тут на первый план выходит мнение, что большинство заболеваний вызывается внешними, а вовсе не наследственными факторами. Кроме того, степень проявления признаков, характерных для многих наследственных нарушений, связанных с одним геном (и для некоторых, связанных с многими генами), во многом зависит от внешних условий. Поэтому, как выразилась медицинский генетик Пат-рисия Бэйрд, не следует переоценивать генетический подход применительно к общественному здравоохранению. (Как мы увидим в гл. 12, такой подход будет приобретать все большую значимость по мере прогресса в геномике.) Пока наибольших достижений в области здравоохранения можно ожидать на уровне улучшения и контроля внешней среды.


Глава седьмая НАСЛЕДСТВЕННЫЙ МАТЕРИАЛ, ДНК

С самых первых научных исследований механизма наследственности ученых не переставал интересовать главный вопрос: «Что представляет собой наследственный материал?» В начале XX века гипотеза Саттона—Бовери о том, что гены находятся в хромосомах, стала общепризнанным мнением. Но какое химическое вещество в хромосомах служит переносчиком генетической информации? Еще на заре биохимии ученые предполагали, что на роль носителя информации подходят два основных вида химических веществ клетки — белки и нуклеиновые кислоты. И хотя об их строении было известно мало, белки, как более сложные, казались наиболее подходящим кандидатом. Поэтому считалось, что гены состоят из белков. Вместе с тем некоторые опыты свидетельствовали о том, что не стоит сбрасывать со счетов и нуклеиновые кислоты. Когда Э. Б. Уилсон публиковал свой классический труд «Клетка и ее роль в наследственности и эволюции», в одном издании он написал, что наиболее важный материал — белки, а в другом издании назвал нуклеиновые кислоты. Однако никто ничего не знал наверняка.

Ответ на этот ключевой вопрос дали исследования бактерий и поражающих их вирусов. В небольшой промежуток времени, в 1952—1953 годы стало окончательно ясно: наследственное вещество — это дезоксирибонуклеиновая кислота (ДНК), и ее физическая структура определяет все основные феномены наследственности. Отождествление ДНК с генетическим материалом и открытие ее структуры — одно из величайших научных достижений XX века. Смысл этого открытия поистине грандиозен. Структура молекул ДНК в огромной степени определяет наши физические черты, включая строение нервной системы, поэтому можно предположить, что от ДНК во многом зависит наше поведение и даже наша личность. Знание структуры ДНК дает возможность проникнуть в тайны человеческой природы. История о том, как человек получил это знание и как были собраны воедино по кусочкам все детали сложной картины, служит замечательным примером изобретательности и гениальности человека.

Бактерии

Вспомним, что бактерии отличаются от других организмов тем, что они прокариоты, то есть не имеют окруженного мембраной ядра, в отличие от эукариот, в том числе растений и животных, в клетках которых имеется настоящее ядро. Кроме того, бактерии настолько малы, что разглядеть их можно лишь в очень хороший микроскоп (с увеличением 1000), и даже тогда их строение можно подробно рассмотреть лишь с помощью электронного микроскопа. На рис. 7.1 показаны относительные размеры некоторых наиболее распространенных бактерий и относительные размеры некоторых вирусов, которые еще меньше бактерий и которые также играют очень важную роль в изучении генетики.

 

Рис. 7.1. Большая бактерия Clostridium welchii имеет приблизительные размеры 4 х 1 мкм (микрометров). 1000 мкм = = 1 мм; 1000 нм (нанометров) = 1 мкм. Мелкие бактерии, такие как Escherichia coli и Serratia, могли бы вполне поместиться внутри нее вместе с другими, еще более мелкими бактериями и вирусами; TMV — вирус табачной мозаики

Хотя мы обычно вспоминаем о бактериях исключительно в связи с болезнями, подавляющее их большинство — «добропорядочные» существа, обитающие в естественных водоемах, почве или в других организмах. Самая изученная бактерия Escherichia coli {E. coli)1 наряду с другими бактериями обитает в толстом кишечнике человека и входит в состав фекалий. (Эти бактерии помогают работе кишечника, а также обеспечивают нас некоторыми витаминами.) Бактерии часто изучают для того, чтобы научиться контролировать их патогенные (болезнетворные) виды, но они представляют интерес и с чисто научной точки зрения, потому что это относительно несложные одноклеточные организмы, быстро растущие в простой питательной среде. Организмы вроде Е. coli растут в растворе сахара, из которого они черпают энергию и получают атомы углерода, а также некоторых солей вроде сульфата магния и хлористого аммония, которые обеспечивают их другими строительными материалами. После стерилизации чашечки с такой питательной средой посредством нагревания в нее помещают бактерии.

Каждая клетка получает из внешней среды питательные вещества, материалы и превращает их в свои внутренние вещества при помощи большого количества ферментов. При этом она растет. (Следует заметить, что больше всего клетка производит ферментов, которые и помогают ей расти дальше.) После небольшого промежутка времени (около 30 минут) клетка делится пополам. Каждая из дочерних клеток в свою очередь продолжает расти и делиться: получаются четыре клетки, затем восемь, шестнадцать и т. д. Такая схема роста называется экспоненциальным ростом, и в чем-то она похожа на схему роста процентов капитала, при котором полученные за определенный период проценты включаются в общую сумму и учитываются при исчислении последующих процентов. (В случае с бактериями «процентные ставки» настолько велики, что достигают 100% за полчаса.) Несколько бактерий могут дать неисчислимое потомство, и их рост прекратится, когда в среде исчерпаются питательные вещества, кончится кислород или накопится слишком много отходов.

Питательная смесь агар (вещество, получаемое из водорослей и применяемое, в частности, как уплотнитель для мороженого) при остывании приобретает студенистую консистенцию, и на такой плотной основе легко выращивать и изучать бактерии. При помощи стерильной пипетки или проволочной петли на поверхность агара наносят бактерии и распределяют их стерильной стеклянной палочкой. Эта процедура называется посевом бактерий. Каждая клетка растет и размножается там, куда ее поместили, поэтому все дочерние клетки концентрируются в одном месте. Через некоторое время клеток становится так много, что появляются видимые колонии (рис. 7.2) определенного цвета и формы.

Рис. 7.2. Если раствор с бактериями нанести на поверхность питательной среды в чашке Петри, то каждая клетка вырастет в заметную для глаза колонию и образует клон бактерий

По форме и цвету колоний можно опознавать разные бактерии и изучать их свойства. Каждая колония называется также клоном. Этот термин, который в современной молекулярной генетике приобрел специфические значения, обозначает прежде всего группу особей или клеток, произошедших от общего предка путем бесполого размножения. Земляника, например, может размножаться посредством отростков, которые пускают корни, и все получившиеся растения — это тоже клон. Отдельные клетки многих видов растений и животных можно выращивать также в чашках с питательной средой, где они в течение некоторого времени растут и делятся. Популяция клеток, полученных подобным способом от одной единственной клетки, также образует клон.

Первые шаги

В 1928 году Фредерик Гриффит обнаружил, что вещество умерших клеток одного штамма бактерий может переносить свои характеристики живым клеткам другого штамма. Например, было известно, что штамм IIIS бактерий Diplococcus pneumoniae может вызывать летальную пневмонию у мышей, тогда как штамм IIIR относительно безвреден. Гриффит нагрел раствор с клетками IIIS до высокой температуры, тем самым убив их, и перемешал остатки клеток с живыми клетками IIIR, после чего ввел мышам полученную смесь. Мыши погибли. По всей видимости, живые клетки вобрали в себя из мертвых клеток какой-то материал, который трансформировал их и передал им характеристики штамма IIIS. В 1944 году Освальд Т. Эйвери и его коллеги по Центру Рокфеллера в Нью-Йорке на опытах доказали, что трансформирующим фактором служит ДНК. Они разрушали белки и другие вещества клеток, но трансформация при этом продолжалась, но когда они разрушили ДНК, трансформация прекратилась.

Так был сделан первый важный шаг в исследовании генетического материала — его отождествили с нуклеиновой кислотой. Правда, подобные опыты ученую общественность особо не убеждали. Они расходились с данными, согласно которым молекула ДНК относительно проста по своей структуре. Многие биологи считали, что сложную генетическую информацию могут передавать только белки, имеющие сложную структуру, и это убеждение помешало им признать результаты опытов. Более убедительное подтверждение было получено в 1952 году в результате классического эксперимента иного рода.

 

Вирусы В отличие от организмов, состоящих из одной или нескольких клеток, существуют особые биологические неклеточные образования, способные размножаться только внутри живой клетки. Такие частицы называются вирусами. Еще древние римляне знали, что некоторые заболевания могут передаваться людям от животных, и слово virus по-латыни означает «яд». Болезни, передаваемые ядами, назывались вирулентными. Конечно, римляне не могли разглядеть невооруженным глазом, что именно вызывает болезни, и, на их взгляд, химические отравления (вроде ботулизма), инфекци
онные бактериальные болезни (вроде тифа) или вирусные заболевания (вроде полиомиелита) были одинаковы. В эпоху Возрождения болезни делили на заразные и незаразные, причем словом «вирус» обозначали заразные болезни. В XIX веке после опытов Пастера ученые узнали о существовании бактерий, которых они назвали «вирусами болезней». Но к началу XX века выяснилось, что многие заболевания вызывают какие-то неизвестные агенты, которых невозможно выращивать в питательном растворе подобно бактериям и которые настолько малы, что проходят через все фильтры для бактерий. Поэтому словом «вирус» (поначапу «фильтрующийся вирус») стали называть именно такие частицы. С внедрением в научный обиход электронного микроскопа стало возможно изучать строение вирусов во всех подробностях. В 1915 году Фредерик Творт обнаружил, что поверхность чашек с бактериями (Micrococcus) часто становится водянистой или стекловидной. На таких участках поверхности уже не было живых бактерий, но зато содержался некий фактор, поражавший другие бактерии. Открытие Творта не вызвало особого интереса биологов, но в 1917 году Феликс Д'Эрелль сообщил о «невидимых микробных антагонистах дизентерийных бацилл». Позже он написал о том, что в 1910 году при изучении бактерий, вызывающих диарею у мексиканской саранчи, он пришел к мысли, что и у бактерий бывают свои «заболевания». В толстом слое бактериальной культуры можно было разглядеть участки с мертвыми бактериями. Такое наблюдение убедило его, что с бактериями можно бороться при помощи бактериальных вирусов. В 1915 году он решил найти вирусы, убивающие дизентерийные бактерии Shigella. Свое открытие Творт описывал следующим образом: «На следующее утро, открыв инкубатор, я испытал одно из тех редких мгновений сильногодушевного подъема, которые вознаграждают исследователя за все невзгоды: с первого взгляда я заметил, что бульон с культурой, который накануне ночью был мутным, стал ясным и чистым; все бактерии исчезли, растворились, словно сахар в воде. Там, где я сделал мазки на агаре, не было заметно роста, и душевное волнение я испытал в тот момент, когда понял: причиной появления всех чистых участков был невидимый микроб — микроб, не проходящий через фильтры, нефильтрующийся вирус, паразитирующий на бактериях. И тут же я подумал: "Если это верно, то, по всей видимости, то же самое произошло за ночь и с больным, который вечером накануне находился в критическом состоянии. В его кишечнике, как и в моей пробирке, дизентерийные бациллы должны были раствориться под действием своего паразита. Теперь его можно излечить". Я тут же бросился в больницу. И действительно, за ночь его общее состояние чрезвычайно улучшилось, и началось выздоровление»2. Д'Эрелль назвал вирусы бактерий бактериофагами («пожирателями бактерий»). Благодаря его упорному стремлению найти мощное антибактериальное средство были открыты фаги, специфические для возбудителей сибирской язвы, бронхита, диареи, скарлатины, бубонной чумы и остеомиелита. Вдохновленный примером Д'Эрелля, писатель Синклер Льюис написал роман об ученом Мартине Эрроу-смите, который открыл Х-принцип, подобный бактериофагам Д'Эрелля. В течение последующих десятилетий во многих странах о терапевтических свойствах бактериофагов  

особо не вспоминали, в основном благодаря тому, что антибиотики, широко распространившиеся во время Второй мировой войны, позволяли легко излечивать инфекционные заболевания. Однако в Восточной Европе, особенно в Польше и Советском Союзе, фаговой терапии продолжали уделять важное внимание. В течение последних нескольких лет о ней вновь заговорили, потому что многие патогенные бактерии выработали иммунитет ко всем применявшимся против них антибиотикам. Так фаговая терапия снова входит в моду. Но это совсем другая история, и она еще ждет своего продолжения.

Бактериофаги

В 1915 году англичанин Фредерик Творт и канадец Феликс Д'Эрелль независимо друг от друга открыли бактериофаги, которые вызывают инфекции среди бактерий. Сама идея об инфекциях среди бактерий может показаться на первый взгляд странной, поскольку мы уверены, что инфекции вызывают сами бактерии. Однако биологам хорошо известно, что у многих паразитирующих организмов имеются свои, более мелкие паразиты. Бактериофаги, или, как еще их называют, фаги, представляют собой вирусы, растущие внутри бактерий, подобно тому как другие вирусы размножаются внутри клеток растений или животных. На их примере можно исследовать общие особенности поведения вирусов.

Прежде всего, вирусы — это не организмы. Каждый организм состоит из одной или нескольких клеток, но полностью сформированные вирусные частицы, вирионы, гораздо меньше любой клетки.

Рис. 7.3. Общее строение вирусных частиц, или вирионов, вирусов бактерий и вирусов животных

Они состоят из нуклеиновой кислоты (ДНК или РНК), заключенной в защитную белковую оболочку (рис. 7.3). Большинство вирионов имеют сферическую или вытянутую форму. Вирусы животных обычно попадают внутрь клеток, где присоединяются к поверхности клетки и поглощаются (подобно питательным веществам); вирусы растений обычно проникают через порезы, сделанные насекомыми или червями. Многие фаги, как тот, что показан на рис. 7.3, прикрепляются к бактериям при помощи «хвоста», или отростка. Это можно было увидеть еще на первых электронных микрофотографиях, сделанных до 1945 года. Тогда же выяснили, что фаги приблизительно наполовину состоят из белка и наполовину из ДНК. И хотя больше почти ничего о вирусах не знали, они оказались прекрасным материалом для генетических исследований.

Рис. 7.4. Фаги выращивают в чашках Петри, смешивая их образец с бактериями, в которых они могут размножаться, и с агаром. Эту смесь наливают поверх питательного агара в чашку. За несколько часов бактерии размножаются и равномерно распределяются по всему верхнему слою. Чистые участки, или бляшки, указывают на те места, где началась инфекция фагов, убивших бактерии

С фагами удобно работать еще и потому, что они очень быстро размножаются, и за полчаса образуется 100—200 новых фагов. Их также легко выращивать в чашках Петри (рис. 7.4); немного фагов смешивают с теплым агаром и бактериями, и эту смесь наливают поверх слоя питательного агара. Бактерии растут тонким равномерным слоем, который называется газоном, а деятельность фагов приводит к образованию стерильных участков, или бляшек, в центре которых начиналась инфекция, погубившая клетки вокруг. Определить количество фагов в любом материале можно по количеству бляшек в образце. Кроме того, размер и форма бляшек обычно указывают на те или иные особенности фага. Исследования размножения фагов в начале 1940-х годов проводили Макс Дельбрюк, Сальвадор Лу-рия и Альфред Д. Херши, которых неформально называли американской фаговой группой. Их ученики и последователи изучили размножение фагов во всех подробностях, сконцентрировавшись на нескольких типах — от Т1 до Т7, паразитирующих на Е. coli. Открыть структуру и принципы функционирования генов удалось во многом благодаря именно этим исследователям.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных