Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Расчет кратких таблиц смертности




Для анализа состояния и тенденций уровня смертности чаще всего бывает достаточным использование кратких таблиц смертности, т.е. по пяти­летним возрастным интервалам. Для их построения необходимо распола­гать пятилетними возрастными коэффициентами смертности или данными для расчета таких коэффициентов. Обычно достаточно рассчитать лишь одну колонку таблиц, lx, qx или px, а все остальные колонки, кроме Lx, рас­считываются на основе взаимосвязей показателей таблиц смертности, представленных выше.

Для перехода от возрастных коэффициентов смертности тх к вероятностям смерти qx используется обычно одна из двух формул:

(6.5.11)

 

(6.5.12)

где qx вероятность смерти в возрасте «х»; тх возрастной коэффициент смертности; n — длина возрастного интервала.

Все остальные формулы показаны выше.

Построим для примера краткие таблицы смертности мужского населения России за 1995 г. и рассмотрим алгоритм расчета (см. таблицу 6.5).

1. Из двух методов расчета по формулам (6.5.10) и (6.5.1 1) выберем вто­рой метод — по показательной функции, потому, что она лучше, чем пер­вая, учитывает кривизну изменения чисел доживающих lx. При этом вмес­то колонки вероятностей смерти qx будем рассчитывать колонку ее дополнения до единицы, т.е. вероятность дожития до следующего возраста, px. Таким путем мы избежим большого числа вычитаний из единицы.

2. Но сначала нужно возрастные коэффициенты смертности разделить на 1000 (т.е. перевести их из промилле в доли единицы) и перемножить на длину соответствующих возрастных интервалов. Для первого возрастного интервала 0 лет множитель будет равен 1, для второго — 1 — 4 года — 4, для остальных интервалов — 5.

3. Затем, возводя основание натурального логарифма «е» в отрицательную степень, равную произведению возрастного коэффициента смертно­сти на длину возрастного интервала, находим значения колонки вероятно­стей дожития px (колонка 3 в таблице 6.5).

4. Следующая колонка — чисел доживающих «lx». Первое значение числа доживающих для возраста 0 лет — основание таблицы смертности 100000 (константа, которую всегда нужно помнить). Умножив 100000 на число доживающих p0, получаем число доживающих l1, умножив l1 на p1, получаем l2, и так — все значения колонки чисел доживающих до возраста «85 лет и старше».

5. Затем рассчитываем значения колонки dx как разность между соседними числами доживающих, т.е. 100000 – l0 = d0; l1 – l2 = d1, и т.д.

6. Далее рассчитываем числа живущих. Для всех возрастных интервалов, кроме первых двух ранних детских, числа живущих рассчитываются по формуле Lx = dx / тх. Для первых двух возрастных интервалов — 0 и1—4 — числа живущих определяются иначе ввиду резкой кривизны изменения линии дожития на этом участке. Так число живущих в возрасте 0 лет определяется уравнением L0 = l0 - 2 / 3dx. Число живущих в следующем детском возрастном интервале 1—4 года определяется из следующего уравнения 4L1 = 1,704l1 + 2,533l5 - 0,237l10. Число живущих в так называемом открытом возрастном интервале — 85 лет и старше — определяется по формуле L85+ = l85 / m85+. Поскольку все дожившие до 85 лет раньше или по­зже умрут после этого возраста, d85+ = l85.

Таблица 6.5






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных