Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Крупнейшие полости отдельных континентов 3 страница




Источником звука, слышимого человеком, являются также некоторые птицы. В средних широтах это чаще всего голуби или каменные стрижи, гнездящиеся в слабоосвещенных привходовых частях пещер; в низких широтах наибольший интерес представляют обитатели пещер гуахаро (Ю. Америка) и саланган (Ю. Азия). Крики, издаваемые гуахаро, находятся в звуковом диапазоне 1500-7000 герц, а продолжительность их не превышает 0,001 с. Гуахаро питаются плодами пальм, и звуковая локация нужна им только для ориентировки в темноте пещер, где они укрываются днем. Стрижи-саланган обитают в труднодоступных уголках пещер. В отличие от гуахаро это дневные насекомоядные животные. Во время охоты они пользуются зрением, но в пещерах используют эхолокацию, издавая щелчки частотой 4-5000 герц, продолжительностью 0,002-0,006 с.

Наконец, мощным источником звука под землей являются летучие мыши. Их "рабочий диапазон" очень широк и для разных родов и видов меняется в пределах от 10000 до 150000 герц. Человек воспринимает лишь малую часть спектра звуков, испускаемых летучими мышами (10000-20000 герц), да и эта его способность уменьшается с возрастом. Египтяне и ранние эллины даже считали, что старость начинается с момента, когда перестаешь слышать писк летучей мыши.

Большая часть звуков, испускаемых летучими мышами, лежит в ультразвуковом диапазоне. И наше счастье, что диалоги рукокрылых с окружающей средой не воспринимаются ухом человека. Американский ученый Алвин Новик доказал, что громкость импульса, испускаемого складчатогубом, наиболее распространенной летучей мышью Америки, доходит до 145 децибелов; это сравнимо только с уровнем шума стартующего реактивного самолета.

В 80-90 гг. появились сообщения о Гроте скелетов в Хакассии (Россия). У обследовавших его опытных спелеологов начало возникать неясное чувство тревоги, перерастающее в волнение, а затем - в панический страх. Исследования специалистов-медиков Сибирского отделения Академии медицинских наук показали, что в пещере происходит апериодическое нарастание магнитного поля, не связанное с его изменениями на поверхности, но зато хорошо коррелирующееся с ощущением дискомфорта у спелеологов.

Инфразвуковые колебания в пещерах могут генерировать ветер, падающая вода, микросейсмические колебания, землетрясения. Доказано, что в определенных условиях инфразвуковые волны порождают магнитные бури. Довольно давно установлен и эффект "полостных структур", в определенных точках которых возникает сильное электрическое поле. А что такое сложная пещера, состоящая из переплетения ходов, лазов, колодцев, тоннелей, как не полостная структура?!

Талантливый геолог и писатель-фантаст И. Ефремов писал в романе "Туманность Андромеды": "Только в пещерах бывает такая тишина... на страже ее стоит косная материя земной коры". Так прав ли И. Ефремов?

Под землей живет, притаилось, а иногда выплескивается в самых удивительных проявлениях целое море слышимых и не слышимых человеком звуков. И знаем мы о нем пока далеко не все.

7.6. Каждому времени - свои страхи

Отношение к подземному миру на протяжении веков неоднократно менялось. В раннем средневековье полагали, что под землей располагается ад. Затем в Западной Европе появились многочисленные "драконьи", а в России - "индриковы" пещеры. В XVI-XIX вв. пещеры не без оснований населяли разбойниками. В конце XIX в. считалось, что главная опасность пещер - лабиринты, из которых невозможно найти выход.

В 20-е гг. XX в. мир потрясло "проклятье фараона": серия загадочных болезней и даже смерти людей, причастных к вскрытию гробницы Тутанхамона. Серьезные ученые относились к нему, как к мифу той же группы, что и "цифровая мистика пирамид". Дело в том, что этого проклятия не содержит ни одна из расшифрованных надписей, оно противоречит и египетскому похоронному ритуалу, требующему выказывать усопшим благоговение и уважение /14/.

Вторая мировая война заслонила собою и пирамиды, и мумий. Но факты продолжали накапливаться, выстраиваясь в некую систему. Краковский журналист Зб. Швиенх собрал тысячи фактов из Польши и Египта, Италии и США, Великобритании и Южной Америки, свидетельствующих, что смерть людей, причастных ко вскрытию саркофагов и гробниц,- не такое уж необычное дело. Что же вызывало их?

Еще в 1906 г. Г. Дарлинг обнаружил новый вид сапрофитных грибов - гистоплазма, размножающийся в почве или на контакте с гуано летучих мышей и птиц. Для его развития необходима довольно высокая температура (18-23 °С) и влажность воздуха (более 70%). Сейчас известно три вида грибов: Histoplasma capsulatum, H. Duboisii, H. Farciminosum. Встречаются они в тропических пещерах Африки, Центральной и Южной Америки, возможно, Южной Азии. Переносчиками заболевания являются также летучие мыши и птицы.

Наиболее тяжелой формой заболевания является легочный гистоплазмоз. После 5-15 дней инкубационного периода он проявляется ознобом, кашлем, болью в груди, одышкой, слабостью. Инфекция быстро распространяется, поражая легкие, а затем - почки, печень, центральную нервную систему.

Нарастает анемия и через 4-10 месяцев наступает смерть. При узелковой форме возможен рак легких. Противогрибковые антибиотики дают результат лишь при своевременном вмешательстве.

В 1962 г. микробиолог Каирского университета Э. Таха сообщил, что он обнаружил болезнетворный грибок Aspergillus niger, обитающий в мумиях, пирамидах и склепах, тысячелетиями остававшимися закрытыми. Он провоцирует лихорадку и сильнейшее воспаление дыхательных путей, которым часто болеют археологи и сотрудники музеев Египта. Открытие Тахи было тем более убедительным, что через несколько дней он погиб в автомобильной катастрофе. Вскрытие показало, что ее причиной был острый приступ бактериальной эмболии.

В 1973 г. в гробнице польских королей в Вавеле был открыт саркофаг Казимира IV Ягеллончика, сооруженный почти 500 лет назад. В 1992 г. краковский микробиолог Б. Смык обнаружил в нем неизвестные науке бактерии, грибы и плесень, а также - Aspergillus flavus, атакующий людей, живущих на болотистых местностях. Именно с ним связана серия неожиданных смертей тех, кто принимал участие в исследовании саркофага.

Сказанного достаточно, чтобы прийти к выводу о вполне вещественных причинах гибели людей, которые вторгаются в подземные пространства, долгое время изолированные от внешнего мира, или исследуют тропические пещеры, зараженные гистоплазмозом. К счастью; это один из немногих случаев, когда мы встречаемся под землей с действительно болезнетворным началом.

В 1946 г. человечество вошло в атомный век, и перед ним возникла новая опасность - радиация. Трагедия Чернобыля в 1986 г. показала ее возможные масштабы. Какова опасность радиационного поражения под землей?

Существуют три типа радиационного воздействия: альфа-излучение (испускание протонов), бета-излучение (испускание электронов) и гамма-излучение (выбрасывание порций энергии из нестабильных атомов-нуклидов). В 50-60 гг. наиболее опасными для человека считались бета- и гамма-излучения. Общие сведения о радиоактивности карбонатных, сульфатных и соляных пород, имеющиеся в справочниках, свидетельствовали, что в карстовых полостях можно ожидать проявления радиоактивности, составляющие 2-8х10-12/экв. Ra/г. Исследования экспедиции московского геофизика В. Н. Дахнова в семи пещерах Крыма полностью подтвердили эти цифры: в 88% случаев величина радиоактивности не превышала 5х10-12 г/экв. Ra/г. Радиоактивность натечных форм несколько меньше (1,5-2,5х10-12), а глин - больше этой величины (7-10х10-12). Подтвердили эти исследования и результаты попутных замеров, выполненные в сотнях других пещер мира. Радиационную опасность представляли только полости, проходящие близ рудных тел, содержащих радиоактивные минералы, или гидротермальные полости с заполнителем из таких минералов. Например, в 1989 г. Международной Тюямуюнской экспедиции при работе в пещере Ферсмана, где был открыт первый в России радий, пришлось завести на всех участников карточки радиационного контроля.

Положение резко изменилось, когда в 60-70 гг. в США, а в 80-е гг. в Европе (Великобритания, Чехия, Венгрия) появились первые публикации о радоне в пещерах. Русскоязычных читателей ввела в проблему небольшая статья В. М. Наседкина и А. Б. Климчука, опубликованная в сборнике "Свет" в 1989 г. Оказалось, альфа-радиация не так безвредна, как считалось раньше. Основной ее естественный источник - радон. Это бесцветный, не имеющий запаха и вкуса, тяжелый (в 7,5 раз тяжелее воздуха) газ, образующийся при распаде изотопов радия. Источником радия является уран, в малых концентрациях распространенный во всех породах земной коры. Радон химически инертен и легко диффундирует из породы в окружающую атмосферу. Интенсивность диффузии возрастает с понижением атмосферного давления и повышением температуры. В подземных естественных и искусственных пустотах содержание радона может существенно увеличиваться. В результате распада радона образуются короткоживущие изотопы полония, свинца, висмута, являющиеся альфа- и бета-излучателями. Вдыхая воздух, содержащий аэрозольные частицы с осевшими на них дочерними продуктами распада, человек может получить существенную дозу альфа-радиации. Концентрацию радона обычно выражают в беккерелях на кубический метр (Бк/м3), а для определения допустимых доз используют более сложные расчетные критерии.

Первые работы по изучению содержания радона в пещерах бывшего СССР дали ошеломляющие результаты. Оказалось, что повышенное в 10-300 раз по сравнению с открытой атмосферой содержание радона - такое же атрибутивное свойство пещер, как повышенное в 1-30 раз содержание углекислого газа. В отдельных пещерах Подолии (Оптимистическая, Озерная), Крыма (Мраморная), Кавказа (Илюхина, Арабикская, Азишская), Средней Азии (Кап-Кутан, Хашим-Ойик, Геофизическая) содержание радона колеблется от nx100 до nx10000 Бк/м3. Максимальные значения получены в Крыму (Глиняный зал Мраморной пещеры, 39 300 Бк/м3) и в Средней Азии (Геофизическая, 68 100 Бк/м3). Выявлен ряд важных особенностей распределения радона по сезонам и морфологическим элементам пещер. В ряде полостей можно получить предельную годовую дозу радиации за один рабочий выход или за пять дней пребывания в подземном лагере.

Несмотря на неполноту имеющихся данных, уже можно сформулировать некоторые общие требования "спелеологической" радиационной безопасности. Во-первых, необходимо продолжать радиометрическое обследование пещер; во-вторых, оценку радиационной опасности следует производить раздельно для постоянных работников (экскурсионные пещеры, подземные стационары, лаборатории); в-третьих, в пещерах с высоким содержанием радона надо применять специальные меры безопасности - ограничение общего времени пребывания под землей, планирование работ на зимний период, когда концентрация радона минимальна, использование респираторов, отказ от курения в пещерах (риск заболевания раком легких, создаваемый курением и альфа-радиацией, не складывается, а умножается).

Совершенно не изучен вопрос о содержании радона в искусственных подземных полостях и сооружениях, где также следует ожидать его повышения. Радиационная опасность различных сооружений зависит не только от их положения, но и от строительных материалов. Использование "безотходной технологии" в Канаде и США привело к тому, что в стены многих зданий были заложены материалы, дающие повышенный альфа- и гамма-фон. Пришлось проводить радиационную съемку, отселять много семей, сносить дома.

Интересную гипотезу выдвинула винницкая журналистка Л. Белозерова. Она обратила внимание на резкое ухудшение состояния здоровья Адольфа Гитлера после посещения им ставки "Вервольф" на Восточном фронте. Симптомы болезни - слабость, перерождение нервной системы, отклонения в психике - очень похожи на те, что поразили ликвидаторов Чернобыльской аварии. Анализы бетонных и гранитных блоков "Вервольфа" показали, что фашистское логово "светит" по-крупному.

Но как увязать все сказанное с тем, что многие спелеологи 50-х гг. (в том числе - и автор) провели под землей месяцы и годы, хотя по современным данным во многих пещерах можно было бы находиться сутки и недели, а кое-где - даже часы? Радон многолик. В небольших дозах, сопоставимых с фоновой дозой за месяц, он используется на многих курортах. Вот еще одна загадка для упрямо не желающей развиваться спелеомедицины.

Как и в случае с углекислым газом, выявились и некоторые "положительные" стороны повышенной альфа-радиации. Детальная радонометрическая съемка пещер-лабиринтов и крупных вертикальных полостей является великолепным средством их микроклиматического зонирования, выявления основных путей воздухообмена и прогнозирования возможных продолжений. Ведь известно, что за узкими "газящими" щелями скрываются крупные залы.

В конце XX века различные специалисты (геологи, биологи, медики) начали обращать внимание на так называемые "геопатогенные" зоны (ГПЗ). Одни считают, что ГПЗ - болезнетворные земли, длительное пребывание на которых ведет к раку, рассеянному склерозу, полиартриту, гипертонии; другие полагают, что ГПЗ - разрывы в земной коре, близ которых происходит выделение гелия, аргона и других газов, накопление электрической энергии, концентрация водных потоков. Некоторые специалисты даже дают точный "адрес" таких зон - участки пересечения разрывов и сгущения трещин, кладбища, свалки и пр. В этот перечень по неясным для спелеологов причинам попали и подземные пространства. Днепропетровский ученый В. В. Воробьев (1993) прямо указывает, что "над карстовыми пустотами и подземными выработками наблюдается резкий всплеск опасной для человека энергии". Итак, ад, драконы, индрики, разбойники, "проклятье фараона", радон, геопатогенные зоны...

Кто знает, какие "пугала" появятся в пещерах в XXI веке?

 

 

ВОДА ПОД ЗЕМЛЕЙ

 

Есть много струй в подлунном мире,
Ключи поют в пещерах, где темно,
Звеня, как дух
...

К. Бальмонт

8.1. Многоликая странница

Карстовые пещеры являются порождением движущейся воды и одновременно - ее вместилищем. Еще натурфилософы Древней Греции отмечали многообразие форм существования воды: в атмосфере она находится в виде пара; в порах, трещинах и кавернах - в капельно-жидком виде, стекая по их стенкам; в пещерах образует скопления стоячей (лужицы, озера) или движущейся (ручьи, реки) воды; в благоприятных климатических условиях она формирует значительные скопления снега и льда. Законы движения воды в разных состояниях различны и исследуются методами метеорологии, гидрологии и гляциологии. Чтобы правильно оценить особенности подземного ландшафта, спелеологу приходится использовать основные положения как этих, так и многих других научных дисциплин. Попробуем и мы кратко ознакомиться с "тонкостями" поведения воды под землей.

С парообразной влагой связана одна из самых противоречивых проблем современной гидрогеологии - проблема конденсации. Первые упоминания о возможности конденсации влаги в пещерах Средиземноморья принадлежат древнегреческим философам Фалесу Милетскому и Аристотелю (VII-VI вв. до н. э.). В XVII в. их идеи развили Рене Декарт и Цезарь Кюн, а в 1887 г. Отто Фольгер предложил гипотезу о преобладающем значении конденсации в питании подземных вод. В 1890-91 гг. с ее резкой критикой выступил метеоролог Отто Ганн, и лишь глубокие исследования русского гидролога А. Ф. Лебедева (1908-1936 гг.), оставшиеся почти неизвестными за рубежом, возродили эти идеи на новой теоретической основе.

Прежде всего, было установлено, что парообразная влага может передвигаться независимо от потока воздуха. Она перемещается из зон с большей абсолютной влажностью (е, мм рт. ст.) к зонам с меньшей влажностью, а при их равенстве - из зоны с большей температурой воздуха (t, °C) к меньшей. Оценить значения е и t на поверхности и под землей можно легко с помощью психрометра.

Второй важный момент. По микроклиматическим данным, в теплый период времени (апрель-сентябрь) абсолютная влажность воздуха под землей на 1-7 мм рт. ст. ниже, чем на поверхности. Таким образом, возникает устойчивый поток влаги из атмосферы в карстовые пещеры и шахты, где и происходит ее конденсация.

Теоретические выкладки А. Ф. Лебедева хорошо подтверждались наблюдениями в карстовых районах. По историко-археологическим данным, именно конденсационную влагу использовали жители античных и средневековых поселений Южной Европы и Центральной Азии; гидрогеологические данные свидетельствуют о существовании небольших, но постоянных источников близ горных вершин, перевалов, на изолированных возвышенностях - останцах, где питание дождевыми осадками близко к нулю; гидрологи давно отметили, что карстовые реки не пересыхают все лето, причем их расходы в период без дождей, длящийся иногда 3-4 месяца, поддерживаются на одном уровне (3-6 л/с). Наконец, прямые эксперименты по получению влаги в специальных установках с различным заполнителем (глыбы, щебенка, галька, песок), проведенные в самых разных климатических зонах - от сухих субтропиков до тундры,- показали, что каждые 5 м3 заполнителя генерируют в среднем 1 литр воды.

В 60-70-е гг. в разных районах бывшего СССР были выполнены десятки тысяч замеров микроклиматических параметров полостей. Их обработка показала, что расходы 25 различных карстовых источников, расположенных в 30-1800 м над уровнем моря, строго следуют за изменениями температуры и абсолютной влажности атмосферного воздуха. Только реагируют они на них по-разному и запаздывают на 1-16 часов, что определяется геологическими и гидрогеологическими особенностями района. Связь между расходом и влажностью характеризуется очень высоким коэффициентом корреляции (0,84+0,12). Расчеты показали, что конденсация под землей в среднем составляет 3,5% от годового количества атмосферных осадков. Казалось бы, мелочь. Но не спешите с выводами. Дело в том, что около 50% выпадающих осадков испаряется и, следовательно, не идет на питание подземных вод. Это повышает реальный вклад конденсации до 7% от осадков. Кроме того, конденсация происходит в теплый период, когда дождей сравнительно немного. Поэтому в отдельных карстовых районах летняя конденсация составляет до 30% от разности осадки/испарение, обеспечивая работу одного условного карстового источника с расходом 4-5 л/с с каждого квадратного километра территории.

Казалось бы, проблема решена. Но гидрогеологи, далекие от спелеологии, не верили ее "ползучим" методам. Повод для сомнений был: ведь конденсация происходит только в теплый период, а зимой абсолютная влажность под землей выше, чем на поверхности! Отсюда напрашивается вывод - зимнее испарение компенсирует летнюю конденсацию...

Пришлось опять залезть под землю. Материалы по крымским пещерам не давали ясного ответа, так как там снег в горах стаивает 5-7 раз за зиму, все время "подпитывая" карстовые воды. В такой ситуации отделить конденсационные воды от инфильтрационных почти невозможно. Другое дело - высокогорье и приполярные области, где он лежит всю зиму! "Первый звонок" прозвучал в шахте Снежная на Бзыбском массиве (Грузия). В стремлении преодолеть рубеж 1000 м А. Морозов, Д. Усиков, Т. Немченко и их коллеги с 1977 г. начали проводить зимние экспедиции. В это время им не угрожали катастрофические паводки (летом здесь иногда выпадает до 100 мм осадков в сутки!). Правда, резко повышалась опасность лавин на подходах (что и привело в 1985 г. к трагической гибели трех спортсменов во главе с опытнейшим А. Морозовым). Работая зимой под землей, спелеологи обратили внимание на то, что, несмотря на низкие температуры, на поверхности (до -30 °С), капель под землей не прекращалась.

"Второй звонок" последовал из гипсовых пещер Пинего-Кулойского плато (Архангельская область). В 1981 г. спелеологи В. Н. Малков и Н. К. Франц рассказали о результатах наблюдений над "зимней" конденсацией. Оказалось, что ее интенсивность увеличивается с понижением температуры воздуха на поверхности.

Теперь оставалось обосновать фактические наблюдения теоретическими расчетами. Для этого опять пришлось вернуться в Крым, где имелся богатейший банк данных по микроклимату пещер. В холодный сезон температура воздуха под землей составляет в среднем +10 °С, абсолютная влажность - 9,0 мм рт. ст., а на поверхности -10 °С и 2,2 мм рт. ст. Таким образом, действительно, в этот период происходит вынос влаги из карстового массива. Но (очень важное "но") происходит он не в открытую атмосферу! Парообразная влага из глубины массива поднимается вверх, конденсируется в верхней, охлажденной части массива и на нижней поверхности покрывающего его снега и в виде капели поступает по трещинам и полостям обратно в глубину массива. Таким образом, летняя конденсация - это прибавка в водном балансе карстовых массивов, а зимняя - "вечный двигатель" коррозионных процессов в приповерхностной зоне.

Но не надо думать, что проблема конденсации разрешена. Конденсационная влага в момент зарождения (in statu nascendi, как говорят химики) обладает нулевой минерализацией и очень высокой агрессивностью - способностью растворять горную породу. Это определяет роль конденсации в холодном (образование микроформ на стенах, разрушение натеков) и горячем (образование пещер-шаров над поверхностью термальных, нагретых свыше 20 °С вод) спелеогенезе. Конденсационное происхождение имеют (или могут иметь) десятки подземных новообразований - сталактиты, коры, кораллиты, геликтиты, цветы и пр. Далеко не все ясно и в теории конденсации, и в методах ее определения.

Все это дало основания для постановки Международным союзом спелеологов специальной программы по комплексному изучению конденсационных процессов в карстовых коллекторах. К ее разработке в 90-е гг. подключились лучшие специалисты мира. Можно утверждать, что через несколько лет здесь нас ждут важные открытия.

8.2. "Кап-кап - капает вода..."

Второй формой движения воды, проникшей под землю в виде атмосферных осадков или образовавшейся вследствие конденсации, является капельно-жидкая. Ну уж тут-то не будет никаких неожиданностей, подумаете вы. Ведь капли дождя мы наблюдаем и на поверхности...

Каплям, действительно, посвящены десятки серьезных исследований и популярных книг /5, 8 и др./. Они всегда в движении, в динамике рождения, преобразования, исчезновения. Их полет - это колебания размеров и формы, распад и слияние, испарение и конденсация. С микроскопических капель горючего начинались ракетная авиация и ракетостроение. Многообразие проблем, связанных с ними, породило мысль о создании науки о капле - "сталагмологии". Не утомляя читателя математическими формулами, коснемся только некоторых особенностей поведения капель воды в карстовых полостях.

"...Мы сидим на покрытом глыбами известняка втором этаже Красной пещеры. Над нами на 135 метров (45-этажный дом...) взметнулся купол Голубой Капели. Там, в недосягаемой вышине, зарождаются капли. В свете наших сильных фонарей видно, как происходит их отрыв. Они набирают скорость - кажется, прямо в лицо летят сверкающие шарики... Но нет. Они проносятся мимо. Удар - и во все стороны разлетаются блестящие осколки. Воздух насыщен водяной пылью и пронизан волнами ритмичных звуков, создающих тот неповторимый фон, который свойствен только подземному миру..."

Приведенные строки - выписка из полевой книжки автора, по специальности гидрогеолога. Интересно сравнить их с восприятием сидевшего рядом физика и кристаллографа Владимира Илюхина. В его блокноте несколько коротких фраз со знаками вопроса: Размеры капель? Скорость и характер падения? Удар? Ответы на них пришли значительно позже.

Размеры капель воды, образующихся в карстовых полостях, зависят от диаметра питающего канала или ширины трещины, интенсивности поступления воды (времени каплеобразования), температуры, поверхностного натяжения (для чистой воды - 70 дин/см), плотности воздуха и многих других причин. Использовав формулу Стокса и выполнив ряд несложных расчетов, можно прийти к понятиям о "маленькой" и "большой" каплях. Маленькая капля имеет размеры, при которых сила поверхностного натяжения больше, чем сопротивление воздуха. Маленькие капли имеют диаметр меньше 0,02 мм. Большие капли (диаметр около 1 мм), напротив, имеют размеры, при которых сила поверхностного натяжения меньше, чем сопротивление воздуха. В условиях пещер мы имеем дело в основном с большими каплями, маленькие капели образуются только близ водопадов, где происходит дробление водяной струи.

Рис. 58. Капелька, возникшая из перемычки, возвращается к сталактиту (А) или образует множество капель сателлитов (Б) (по Я. Гегузину /8/).

Процесс образования капли далеко не так прост, как кажется. Его удалось восстановить, только использовав киносъемку. Набухающая капля увеличивает свой объем, постепенно достигает предельной для данной трещины кривизны (рис. 58). Выходя из трещины, она образует тонкую перемычку, затем отрывается от нее и падает. Перемычка же меняет форму, постепенно превращаясь во вторую каплю меньших размеров. Судьба ее неожиданна: она не летит за большой каплей, а как бы подскакивает вверх, поглощаясь трещиной. Если приток воды из трещины сравнительно большой, то из перемычки образуется множество капель-сателлитов.

Расчеты свидетельствуют, что маленькие капли летят со скоростью, пропорциональной квадрату их радиуса (около 1 м/с), а крупные - до 10 м/с. Сопротивление воздуха расплющивает их - плоская лепешка, надутая воздухом, становится подобной парашюту. Образующая его "пленка" в конце концов прокалывается воздушной струей и распадается на более мелкие капли. Если диаметр капель недостаточен для парашютирования, они начинают вибрировать - менять форму от сферической до эллипсоидальной. Это влияет на отражение света: капля смотрится то темной, то светлой, а на фотографии возникает "пунктир".

Движение капель происходит равноускоренно. По формуле S = gt2/2 легко рассчитать, что при скорости скапывания 0,1 с расстояние между двумя смежными каплями через 0,1 с будет 5 см, а через 1с - уже 93,1 см... Именно это является причиной образования капель из струй, вытекающих из полностью заполненных водой трещин.

Поведение капель в полете помогло разгадать еще одну загадку. В шахтах массива Алек впервые было отмечено, что температура воды в верхней и нижней частях 40-50-метровых каскадов различается на несколько десятых долей градуса. Причем увеличение температуры происходит не при стекании, а в свободном полете. Вода имеет вязкость, поэтому при переходе к более "экономной" сферической форме часть освободившейся энергии расходуется на нагрев капель.

Что же происходит при ударе капли о преграду? Конечный результат ясен: каждый спелеолог видел эгутационные ямки, выдолбленные в скале или в натеке капающей водой. Но какова кинематика этого процесса? Почему "капля камень долбит"? При столкновении капли с преградой она испытывает на себе гидродинамический удар: через нее в противоположном падению направлении распространяется волна торможения (наш современный мир подсказывает аналогию - внезапная остановка у светофора распространяется на все автомашины в пределах квартала). Использовав закон Ньютона (сила есть произведение массы на ускорение), легко определить давление, развиваемое в момент удара,- до 100 кг/см2... Его вполне достаточно для разрушения породы, поворота песчинок и косточек, на которых нарастают слои кальцита, образуя пещерный жемчуг.

8.3. Порядок и хаос

Регулярно падающие из отдельной обводненной трещины капли - классический пример упорядоченной во времени динамической системы. Однако она легко переходит в неупорядоченную - хаотическую. Если скорость поступления воды из трещины мала, то образование и отрыв капель происходят очень медленно и распадаются на два процесса. Набухающая капля начинает совершать колебательные движения вверх-вниз, а отрыв ее от перемычки происходит в любой момент времени. Оставшаяся часть капли, втянувшись обратно в трещину, начинает колебаться внутри нее с амплитудой, зависящей от притока воды. Взаимодействие между ними и порождает хаотический процесс.

В пещерах часто наблюдается пространственно-временной хаос, выражающийся в неупорядоченной капели с плоских потолков, на первый взгляд не связанной с трещинным водопритоком. Механизм его довольно прост: капли, образующиеся на потолке, "подпитываются" из трещин за счет образования тонкой пленки воды. Капля, образующаяся в каком-либо месте потолка в результате случайных причин, начинает расти благодаря перетеканию воды от ближайших капель. Рост выделившейся капли ведет к подавлению других. Этот нелинейный процесс повторяется в разных точках поверхности, создавая хаотическую картину падения капель.

Реальная картина формирования капель на плоских поверхностях и их последующего стекания по стенам пещер осложняется влиянием сил адгезии (прилипания). Рассмотрим простейший случай - стекание капли воды по наклонной стене. Здесь все происходит почти так же, как при скольжении твердого кубика по гладкой поверхности,- действуют сила тяжести, сила реакции опоры и сила трения. Любой участок жидкости, контактирующий с поверхностью, со временем оказывается перед необходимостью оторваться от нее. Положение и размеры капли определяются значениями поверхностных натяжений на границах раздела фаз: жидкость - воздух (ж-в), жидкость - порода (ж-п) и порода - воздух (п-в), которые воздействуют на нее, подобно лебедю, раку и щуке. "Щука" (ж-п) стремится сократить площадь контакта жидкости с породой, препятствуя растеканию и способствуя образованию сферической поверхности капли; "рак" (п-в), напротив, стремится увеличить площадь этого контакта, а "лебедь" (ж-в), как и положено, "тянет" вверх, действуя на каплю под углом к поверхности контакта и помогая то "щуке", то "раку". В результате этого взаимодействия скатываться по поверхности начинают лишь капли, достигшие диаметра 4 мм... Но капля воды не твердый кубик. И перемещается она подобно гусенице: в тыльной части капли вода отрывается от поверхности и перетекает в лобовую часть.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных