ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Единство всех физических законов
Решительное отступление от евклидовой геометрии произошло, когда Гаусс поручил студенту Риману подготовить доклад об «основах геометрии». Гаусс всерьез заинтересовался вопросом, сумеет ли его ученик разработать альтернативу евклидовой геометрии. (За несколько десятилетий до этого Гаусс сам в личных беседах выражал всяческие сомнения относительно евклидовой геометрии. Он даже упоминал в разговорах с коллегами гипотетических «книжных червей», живущих исключительно в двумерном пространстве. Он говорил, что это распространяется на геометрию многомерного пространства. Но будучи крайне консервативным человеком, Гаусс никогда не публиковал своих работ по многомерности, зная, какой взрыв негодования они вызовут у ограниченной, реакционно настроенной «старой гвардии». Гаусс презрительно окрестил их «беотийцами» — по названию одной из народностей Греции, представителей которой считали умственно недоразвитыми[12].) Риман был в ужасе. Этого застенчивого, робкого человека, впадающего в панику при мысли о публичных выступлениях, наставник попросил прочитать перед целым факультетом доклад об одной из самых сложных математических проблем столетия. Следующие несколько месяцев Риман усердно разрабатывал теорию многомерности, напрягая все свои силы и находясь на грани нервного срыва. И без того плачевное положение усугублялось финансовыми проблемами. Чтобы обеспечивать близких, ему приходилось заниматься низкооплачиваемым репетиторством. Кроме того, Риман был вынужден отвлекаться на поиски объяснения физических проблем. Особенно часто он помогал профессору Вильгельму Веберу проводить эксперименты в новой увлекательной сфере — исследованиях электричества. Конечно, электричество было известно и в древности — в виде искр и молний. Но в начале XIX в. это явление заняло центральное место в исследованиях физиков. В частности, внимание ученых привлекло то, что при прохождении тока по проводу, лежащему поверх компаса, стрелка компаса приводится в движение. И наоборот: движение магнитного стержня относительно провода может вызвать возникновение электрического тока в проводе. (Это явление называется законом Фарадея, на его принципах основаны все современные электрогенераторы и трансформаторы, следовательно, во многом он определяет основы современной техники и технологии.) С точки зрения Римана, этот феномен указывал на то, что электричество и магнетизм — проявления одной и той же силы. Вдохновленный новыми открытиями, Риман был убежден, что мог бы дать математическое объяснение, способное объединить электричество и магнетизм. Он с головой ушел в работу в лаборатории Вебера, уверенный, что с помощью математики удастся добиться полного понимания действия этих сил. Но, поскольку Риман был обременен подготовкой к публичному докладу о «началах геометрии», обеспечением семьи и проведением научных экспериментов, здоровье в конце концов подвело его, и в 1854 г. он пережил нервный срыв. Позднее он писал отцу: «Исследования единства всех физических законов настолько увлекли меня, что, когда тема пробного доклада была мне объявлена, я насилу оторвался от исследовательской работы. Затем, отчасти из-за размышлений о ней, отчасти ввиду постоянного пребывания в помещении в эту скверную погоду, я занемог»[13]. Это письмо имеет большое значение, так как ясно свидетельствует, что даже во время многомесячной болезни Риман твердо верил, что откроет «единство всех физических законов» и что математика со временем проложит путь к этому объединению.
Сила = геометрия
Несмотря на постоянные болезни, Риман в конечном счете изменил бытующие представления о значении силы. Еще со времен Ньютона ученые считали силу мгновенным взаимодействием удаленных друг от друга тел. Физики называли ее «дальнодействием», это означало, что некое тело способно оказывать мгновенное влияние на движение удаленных от него тел. Безусловно, ньютонова механика могла описать движение планет. Но на протяжении веков критики утверждали, что «дальнодействие» не является естественным, так как оно означало бы, что одно тело способно менять направление движения другого без соприкосновения с ним. Риман предложил совершенно новую физическую картину. Ему представилось племя двумерных существ, подобных «книжным червям» Гаусса и живущих на листе бумаги. Но в отличие от Гаусса Риман населил этими «книжными червями» скомканный лист бумаги[14]. Что должны думать такие существа о мире, в котором они живут? Риман сообразил, что, с их точки зрения, этот мир остается совершенно плоским. Так как тела этих книжных червей тоже искривлены, они и не замечают, что их мир искажен. Однако Риман утверждал: при попытке переместиться по этому скомканному листу бумаги книжные черви ощутят воздействие таинственной, незримой силы, которая помешает им ползти по прямой. Им придется отклоняться вправо или влево каждый раз, когда впереди окажется очередная складка листа. Таким образом, Риман сделал первое за 200 лет значимое отступление от принципов Ньютона, отказался от принципа воздействия на расстоянии. По Риману, сила — следствие геометрии. Затем Риман заменил двумерный лист бумаги нашим трехмерным миром, «смятым» в четвертом измерении. Деформации нашей Вселенной неочевидны для нас. Но мы сразу почувствуем некий подвох, когда попытаемся идти по прямой. Мы будем двигаться словно во хмелю, как будто незримая сила тянет нас, толкает то вправо, то влево. Риман пришел к выводу, что электричество, магнетизм и гравитация вызваны деформацией нашей трехмерной Вселенной в незримом четвертом измерении. Таким образом, сила не может существовать самостоятельно и независимо, а представляет собой лишь видимое следствие искажения геометрии пространства. Введя в рассуждения четвертое пространственное измерение, Риман случайно наткнулся на тему, которая стала одной из господствующих в современной теоретической физике, — явное упрощение законов природы в категориях многомерного пространства. И Риман приступил к работе над математическим языком, пригодным для выражения этой идеи.
Не нашли, что искали? Воспользуйтесь поиском:
|