ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Пептидные гормоны и рилизинг-факторы. Нейропептиды. Структура и свойства аденилатциклазной системы. Белки-гормоны. Инсулин, гормоны роста. Гликопротеиновые гормоны аденогипофиза.Фибриллярные белки: коллаген – особенности первичной структуры, коллагеновая спираль; особенности сборки.a- иb-кератины, фиброин, эластин ‑ особенности структуры, функциональная роль. Волокна коллагена очень прочны, они входят в состав сухожилий, кожи, хрящей, кровеносных сосудов. Коллаген, составляющий около одной трети всех белков позвоночных, относится к фибриллярным белкам, образующим длинные нити — фибриллы. К таким белкам принадлежат также а- кератины волос и шерсти, фиброин шелка; основой их служат сплетенные вместе а- спиральные пептидные цепи. Впервые рентгенограммы фибриллярных белков были изучены в начале 30- х годов У. Астбери.
Прочность коллагеновых волокон (нить сечением около 1 мм выдерживает нагрузку более 10 кг) во многом достигается за счет дополнительных ковалентных «сшивок» между молекулами тропоколлагена. Установлено, что в образовании «сшивок» участвуют главным образом остатки Lys и HyLys: их ферментативное окисление приводит к соответствующим альдегидам, вступающим в альдольную конденсацию или дающим «шиффовы основания». Строение образующихся «мостиков» устанавливается после их восстановления боргидридами металлов или гидролитического расщепления. Интересно, что употребление животными особого сорта гороха (Lathyrus odoratus) приводит к латиризму, т. е. неправильному развитию скелета, обусловленному поражением коллагенсодержащих тканей. Причиной является высокое содержание в горохе Р- аминопропионитрила H2NCH2CH2CN, являющегося мощным ингибитором Са2 + - активируемой аминоксидазы; в результате не образуются альдегидные группировки и резко уменьшается процент «сшивок». Чистота «сшивок» зависит от функции и возраста ткани: коллагеновое волокно в мягких тканях (язык, хвост и т. п.) «сшито» слабо, а в случае ахиллесова сухожилия — прочно; молодые ткани имеют сравнительно небольшой процент «сшивок» и по этой причине оказываются лучше растворимыми. Коллаген способен разрушаться под действием специфических ферментов- коллагеназ. В частности, одна из коллагеназ микробного происхождения (Clostridium histolyticum) гидролизует в коллагене связь X—Gly (Pro— X— Gly— Pro), что приводит к тяжелому поражению соединительных тканей; это наблюдается при газовой гангрене. Существуют и тканевые коллагеназы, которые действуют специфично, вызывая ограниченный протеолиз коллагена. Близким аналогом коллагена является эластин — белок эластичных волокон, содержащийся в стенках кровеносных сосудов, в связках, в тканях шеи у гусей и лебедей. Характерное свойство эластина — способность его растягиваться в несколько раз. В структурном отношении он аналогичен коллагену, однако имеет мало остатков НуРго и совсем не содержит остатков HyLys. Процент «сшивок» в молекуле эластина исключительно высок, встречаются и многокомпонентные «сшивки» в виде узлов, как, например, в случае образования производных десмозина. Эластиновые волокна не расщепляются трипсином, но медленно гидролизуются пепсином при рН2. Коллаген и эластин практически нерастворимы в воде. При экстракции нерастворимого коллагена водой при 100 °С получаются растворы желатина, которые при охлаждении образуют гель. По вторичной структуре белка семейство кератинов разделяется на две группы:
Для первичной структуры α-кератинов характерно большое содержание цистеина и множество дисульфидных связей. Молекулярная масса — от 10 до 50 кДа. Периодичность в чередовании аминокислотных остатков в молекулах отсутствует. В отличие от α-кератинов поперечные дисульфидные связи между соседними полипептидными цепями у β-кератинов отсутствуют. В полипептидной цепи каждый второй элемент — глицин. Характерно повторение последовательности «GSGAGA». Для α-кератинов основным структурным компонентом являются цилиндрические микрофибриллы диаметром 75 А, состоящие из спирализованных, скрученных попарно протофибрилл. Фиброин – фибриллярный белок, выделяемый паукообразными и некоторыми насекомыми и составляющий основу нитей паутины и коконов насекомых, в частности шёлка тутового шелкопряда Bombyx mori. Фиброин является гетеродимером, образованным двумя белковыми цепями - тяжелой массой 200-500 кДа (H-фиброин, от англ. heavy) и легкой ~25 кДа (L-фиброин, от англ. light). Его первичная структура одинакова у H- и L-субъединиц и состоит из повторяющейся аминокислотной последовательности (Gly-Ser-Gly-Ala-Gly-Ala)n. В свою очередь, повторяющиеся аминокислотные последовательности образуют антипараллельные складчатые β-слои, связанные водородными связями. Эта структура обуславливает высокий предел прочности нитей паутин и шелка. Более прочный, чем кевлар, фиброин вдобавок ещё и высоко эластичен. Эти качества делают его материалом, применяемым в различных областях, включая биомедицину и текстильное производство. Фиброин может образовывать три типа структур, называемых шёлк I, II и III. Шёлк I – натуральная форма фиброина, который выделяется из шёлкоотделительных желез тутового шелкопряда и присутствует в шелке-сырце. Шёлк II - структура фиброиновых молекул в крученой шёлковой пряже, его прочность выше, и он часто используется коммерчески в различных областях. Шёлк III – недавно открытая структура фиброина, впервые замеченная профессором Региной Валуцци (Regina Valluzzi) с помощниками в Тафтском Уиниверситете. Шёлк III формируется преимущественно в растворах фиброинов на поверхности раздела (то есть границе между водой и воздухом, поверхность раздела вода-нефть и т.д.). Исследование шёлка III для лучшего понимания его физической структуры, качеств и состава продолжается. Пептидные гормоны и рилизинг-факторы. Нейропептиды. Структура и свойства аденилатциклазной системы. Белки-гормоны. Инсулин, гормоны роста. Гликопротеиновые гормоны аденогипофиза. Пептидные гормоны (небольшие пептиды, олигопептиды, простые белки, гликопротеины) - наиболее многочисленный и разнообразный по составу и вариабельный в сравнительно-биологическом плане класс гормональных соединений. К числу пептидных гормонов, содержащих от 3 до 200 аминокислотных остатков, относятся все гормоны гипоталамуса и гормоны гипофиза, а также инсулин и глюкагон, секретируемые поджелудочной железой. По особенностям химической структуры, свойств и физиологическим функциям входящих в него гормонов этот класс можно разделить на семейства: 1) нейрогипофизарных пептидов; 2) гипоталамических пептидных рилизинг-факторов; 3) ангиотензинов; 4) олигопептидных гипофизарных гормонов ряда АКТГ; 5) олигопептидных гормонов типа глюкагона и гормонов желудочно- кишечного тракта; 6) инсулина; 7) полипептидных гормонов, регулирующих обмен кальция, и полипептидных гормонов, регулирующих обмен фосфора; 8) одноцепочечных (мономерных) пептидных гормонов ряда СТГ; 9) димерных гликопротеидных гормонов. Рилизинг-гормоны, или иначе рилизинг-факторы, либерины, статины — класс пептидных гормонов гипоталамуса, общим свойством которых является реализация их эффектов через стимуляцию синтеза и секреции в кровь тех или иных тропных гормонов передней доли гипофиза. К известным рилизинг-гормонам относятся:
Нейропептиды - олигопептиды, образующиеся в центральной или периферической нервной системе и регулирующие различные физиологические функции организма человека и животных. Большинство нейропептидов образуются в результате расщепления крупных молекул-предшественников по строго определенным связям. Т. обр. из одной молекулы-предшественника, синтезируемой обычным путем в рибосомах, образуется целый набор нейропептидов, обладающих разнообразными свойствами (см., напр., Проопиомеланокортин, ПОМК). Нейропептиды содержат до 50 аминокислотных остатков и взаимодействуют с рецепторами, расположенными на поверхности клеток-мишеней. Размер активного центра, необходимого для взаимодействия с рецептором, не превышает обычно 4—5 аминокислотных остатков. Остальные участки нейропептидов выполняют дополнительные функции, напр. обеспечивают устойчивость к действию протеолитических ферментов (период полураспада нейропептидов колеблется от нескольких секунд до минут). Нейропептиды регулируют практически все фунции ЦНС (болевую чувствительность, состояние сон-бодрствование, половое поведение, процессы фиксации информации и др.). В частности, энкефалины и эндорфины (см. Опиоидные пептиды) играют важнейшую роль в системе болевых ощущений и участвуют в патогенезе некоторых психических расстройств. Кроме того, нейропептиды управляют вегетативными реакциями организма, регулируя температуру тела, дыхание, артериальное давление, мышечный тонус и т. д. Несмотря на возможность протеолиза, нейропептиды, в отличие от типичных нейромедиаторов, существуют в организме относительно долго (часы). Это позволяет им достигать достаточно удаленных синапсов и длительное время оказывать на них свое действие. При этом нередко на одну и ту же мишень действуют сразу несколько нейропептидов, а один и тот же нейропептид — сразу на несколько мишеней. Благодаря этому могут создаваться различные комбинации модуляторов и клеток мишеней. Каждой комбинации соответствует определенное функциональное состояние нервной системы и организма в целом. Причем, в силу многочисленности нейропептидов, все эти состояния образуют как бы непрерывное множество - так называемый функциональный континуум, где одно состояние плавно переходит в другое. В этом, как считают, и состоит биологический смысл существования такого большого количества нейромодуляторов. Нейропептиды осуществляют контроль за экспрессией вторичных клеточных мессенджеров, цитокинов и других сигнальных молекул, а также за запуском генетических программ апоптоза, антиапоптозной защиты, усиления нейротрофического обеспечения. Такие регуляторные (модуляторные) влияния устраняют общую дезинтеграцию во взаимодействии сложных и часто разнонаправленных молекулярно-биохимических механизмов, восстанавливая их нормальный баланс. Особо важную роль играют эндогенные регуляторы функций ЦНС - нейропептиды. Их молекулы, представляющие собой короткие аминокислотные цепи, "нарезаются" из более крупных белковых молекул- предшественников ферментами протеолиза (процессинг) лишь "в нужном месте и в нужное время" в зависимости от потребностей. Нейропептиды существуют всего несколько секунд, но длительность их действия может измеряться часами. Эндогенное образование нейропептида в ответ на какое-либо изменение внутренней среды приводит к высвобождению ряда других пептидов, для которых сам нейропептид является индуктором. Если их совместное действие однонаправленно, эффект будет суммированным и продолжительным.
Инсули́н (от лат. insula — остров) — гормон пептидной природы, образуется в бета-клетках островков Лангерганса поджелудочной железы. Оказывает многогранное влияние на обмен практически во всех тканях. Основное действие инсулина заключается в снижении концентрации глюкозы в крови. Инсулин увеличивает проницаемость плазматических мембран для глюкозы, активирует ключевые ферменты гликолиза, стимулирует образование в печени и мышцах из глюкозы гликогена, усиливает синтез жиров и белков. Кроме того, инсулин подавляет активность ферментов, расщепляющих гликоген и жиры. То есть, помимо анаболического действия, инсулин обладает также и антикатаболическим эффектом. Нарушение секреции инсулина вследствие деструкции бета-клеток — абсолютная недостаточность инсулина — является ключевым звеном патогенеза сахарного диабета 1-го типа. Нарушение действия инсулина на ткани — относительная инсулиновая недостаточность — имеет важное место в развитии сахарного диабета 2-го типа. Молекула инсулина образована двумя полипептидными цепями, содержащими 51 аминокислотный остаток: A-цепь состоит из 21 аминокислотного остатка, B-цепь образована 30 аминокислотными остатками. Полипептидные цепи соединяются двумя дисульфидными мостиками через остатки цистеина, третья дисульфидная связь расположена в A-цепи. Первичная структура инсулина у разных биологических видов несколько различается, как различается и его важность в регуляции обмена углеводов. Наиболее близким к человеческому является инсулин свиньи, который различается с ним всего одним аминокислотным остатком: в 30 положении B-цепи свиного инсулина расположен аланин, а в инсулине человека — треонин; бычий инсулин отличается тремя аминокислотными остатками. Главным стимулятором освобождения инсулина является повышение уровня глюкозы в крови. Дополнительно образование инсулина и его выделение стимулируется во время приёма пищи, причём не только глюкозы или углеводов. Секрецию инсулина усиливают аминокислоты, особенно лейцин и аргинин, некоторые гормоны гастроэнтеропанкреатической системы: холецистокинин, ГИП, ГПП-1, АКТГ, эстрогены, препараты сульфонилмочевины. Также секрецию инсулина усиливает повышение уровня калия или кальция, свободных жирных кислот в плазме крови. Понижается секреция инсулина под влиянием глюкагона. Бета-клетки также находятся под влиянием автономной нервной системы:
Причём синтез инсулина заново стимулируется глюкозой и холинергическими нервными сигналами. Так или иначе инсулин затрагивает все виды обмена веществ во всём организме. Однако в первую очередь действие инсулина касается именно обмена углеводов. Основное влияние инсулина на углеводный обмен связано с усилением транспорта глюкозы через клеточные мембраны. Активация инсулинового рецептора запускает внутриклеточный механизм, который напрямую влияет на поступление глюкозы в клетку путём регуляции количества и работы мембранных белков, переносящих глюкозу в клетку. В наибольшей степени от инсулина зависит транспорт глюкозы в двух типах тканей: мышечная ткань (миоциты) и жировая ткань (адипоциты) — это т. н. инсулинозависимые ткани. Составляя вместе почти 2/3 всей клеточной массы человеческого тела, они выполняют в организме такие важные функции как движение, дыхание, кровообращение и т. п., осуществляют запасание выделенной из пищи энергии. СОМАТОТРОПИН (гормон роста, соматотропный гормон), белковый гормон. Молекула С. представляет собой одну полипептидную цепь, состоящую из 190-191 аминокислотных остатков (мол. м. ок. 22 тыс.). По хим. структуре, физ.-хим. и биол. св-вам С. сходен с пролактином и плацентарным лактогеном и поэтому объединяется с ними в одно семейство. Считается, что эти три гормона произошли в процессе эволюции из общего предшественника. Установлена первичная структура С. человека и неск. видов животных. С. разной видовой принадлежности, обладая большими или меньшими различиями в аминокислотной последовательности, проявляют четкую структурную гомологию друг с другом. Все они содержат один остаток триптофана и 4 остатка цистеина. Последние образуют в молекуле два дисульфидных мостика, к-рые формируют две петли-большую, включающую центр. участок аминокислотной последовательности (в С. человека между цис-теином-54 и цистеином-165), и малую (на С-концевом участке между цистеином-182 и цистеином-189). Высокое содержание в молекуле С. остатков неполярных аминокислот обусловливает большую склонность к образованию в р-ре димеров и более крупных агрегатов. Пространств. структуру молекулы С. отличает высокая степень упорядоченности. В полипептидной цепи С. человека выявлено 4a-спирали и 3 нерегулярных участка. С. человека отличается от изученных С. животных на 34-35% (С. животных неактивны при введении людям). С. вырабатывается и секретируется в кровь специализир. клетками гл. обр. передней доли гипофиза-соматотрофами. Содержание С. в гипофизе человека более чем на порядок превышает содержание др. гормонов этой эндокринной железы. Для С. характерен мол. полиморфизм, к-рый обусловлен альтернативным сплайсингом пре-мРНК или посттрансляц. модификацией (специфич. ограниченный протеолиз, гликозилирование, фосфорилирование и др.). Продукт альтернативного сплайсинга пре-мРНК с мол. м. 20 тыс. выделен из гипофиза человека; у него отсутствует участок, занимающий положение 32-46 в молекуле С. У женщин при беременности в результате экспрессии вариантного гена С. продуцируется в плаценте мол. форма С, отличающаяся от обычного гормона в 15 положениях полипептидной цепи. С.-полифункцион. гормон. Являясь специфич. стимулятором роста тела (скелета и мягких тканей), он участвует также в регуляции всех видов обмена в-в. Осн. дефект развития организма человека и животных в условиях недостаточности С.-задержка роста костей. Избыток С. в растущем организме может приводить к гигантизму, а у взрослых-к ненормальному увеличению отдельных органов и тканей. Действие С. на рост костей опосредовано через соматомедины - инсулиноподобные ростовые факторы полипептидной природы. Отдельные стороны биол. действия С. могут в той или иной мере воспроизводиться фрагментами его полипептидной цепи. Фрагмент 31-44 С. человека проявляет характерное для гормона жиромобилизующее действие. Фрагмент 44-77 воспроизводит диабетогенное действие С., вызывая при введении животным нарушение обмена глюкозы. Фрагменты С. разл. видовой принадлежности 77-107, 96-133, 87-124 способны вызывать биол. эффекты гормона, связанные со стимуляцией ростовых процессов в организме. Биосинтез и секреция С. находятся под сложным контролем, включающим регуляцию гормонами гипоталамуса- соматостатином и соматолиберином, а также нек-рыми др. гормонами и продуктами обмена в-в. Гипофиз продуцирует три из четырех гликопротеиновых гормонов: лютеинизирую-щий гормон (ЛГ), фолликулостимулирующий гормон (ФСГ) и тиреотропин (ТТГ). Хориональный гонадотропин (ХГ) вырабатывается в плаценте. Гликопротеиновые гормоны состоят из двух нековалентно связанных компонентов, α-компонент идентичен у всех четырех гормонов. В отличие от него β-компонент обладает иммунологической и биологической специфичностью у каждого из гормонов. ТТГ влияет на структуру и функцию щитовидной железы и стимулирует синтез и секрецию тиреоидных гормонов. Синтез и секреция же самого ТТГ регулируются гипоталамическим гормоном ТРГ, а также уровнем тиреоидных гормонов в периферической крови. Синтез и секреция ЛГ и ФСГ стимулируются одним и тем же гипоталамическим нейрогормоном - ГнРГ (или ЛГРГ). У женщин ЛГ и ФСГ необходимы для стимуляции созревания яичниковых фолликулов и овуляции. У мужчин же ФСГ действует на клетки Сертоли и служит важным фактором регуляции сперматогенеза, а ЛГ действует на клетки Лейдига в семенниках, стимулируя биосинтез тестостерона. Не нашли, что искали? Воспользуйтесь поиском:
|