Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Уравнение касательной и нормали к кривой.




Из пучка прямых, проходящих через точку , выберем одну прямую — касательную к графику функции: . Из геометрического смысла производной угловой коэффициент касательной: .

Þ .

Þ – уравнение касательной.

Определение: Нормалью к кривой называется прямая, перпендикулярная к касательной, проведенной в точке касания с абсциссой x0.

Так как нормаль перпендикулярна к касательной, то угловой коэффициент нормали: (из условия перпендикулярности прямых). Отсюда: Þ – уравнение нормали.

Пример: Составить уравнение касательной и нормали к графику функции в точке с абсциссой равной 1.

Ордината точки касания:

Производная: .

Найдем значение производной в точке x0:

,

Уравнение касательной: Þ

Уравнение нормали: Þ .

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных