Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Определение физиологии как науки. Предмет и задачи ФР. Место ФР в системе биологических наук. Взаимосвязь с агрономическими науками.




Физиология - это наука о функциях и процессах, протекающих в организме, механизмах их регуляции, которые обеспечивают жизнедеятельность человека и животных в их взаимодействии с окружающей средой. Физиология является теоретической основой всей медицины.

Задачи физиологии:

1)изучение функций и физиологических актов целостного организма и его элементов (систем органов, органов, тканей, клеток);

2)изучение механизмов регуляции функции;

3)изучение влияния окружающей среды на организм, а так же механизм адаптации организма к окружающей среде;

4)изучение взаимосвязи и взаимодействия органов и систем органов.

Предмет физиологии - это нормальный здоровый организм, функционирующий в условиях нормы.

 

Физиология растений относится к биологическим, теоретическим наукам, является отраслью экспериментальной ботаники, которая в XIX в. выделилась в самостоятельную науку. Физиология растений тесно связана с биохимией, биофизикой, микробиологией, цитологией, генетикой, молекулярной биологией. Успешное развитие биохимии способствует изучению обмена веществ и энергии растений на субклеточном и молекулярном уровнях. Трудно установить границы между отдельными биологическими науками, науками о жизни. К. А. Тимирязев неоднократно указывал, что физиология растений является теоретической основой рационального земледелия. Изучая основные закономерности жизнедеятельности растений, раскрывая зависимость функций растений от условий внешней среды, физиология растений является фундаментальной основой всех агрономических наук (земледелие, растениеводство, овощеводство и др.), создает теоретическую основу агротехнических систем, направленных на повышение урожайности и качества продукции сельскохозяйственных культур.

 

. История развития ФР. Основные направления современной ФР. Организация и методы исследований.

Физиология растений — одна из молодых отраслей биологии. Возникновение ее можно отнести к концу XVIII — началу XIX в. Ф. р. развивалась первоначально как составная часть ботаники, занимающаяся преимущественно проблемой почвенного питания растений. В конце 17 в. было установлено наличие у растений пола. В первой половине XX века главным направлением развития физиологии растений становится изучение биохимических механизмов дыхания и фотосинтеза. Параллельно развивается физиология растительной клетки, экспериментальная морфология и экологическая физиология растений. Физиология растений даёт начало двум самостоятельным научным дисциплинам: микробиологии и агрохимии.Во второй половине XX века намечается тенденция объединения в единое целое биохимии и молекулярной биологии, биофизики и биологического моделирования, цитологии, анатомии и генетики растений. Среди учёных возрастает интерес к исследованиям на субклеточном и молекулярном уровнях. В то же время активно идёт изучение механизмов регуляции, обеспечивающих функционирование растительного организма как единого целого. Резко ускоряются исследования механизмов реализации наследственной информации, роли мембран в системах регуляции, механизмов действия фитогормонов. Быстрое развитие физиологии растений открывает новые возможности в биотехнологии, интенсивном сельском хозяйстве. В сельскохозяйственную практику входят химические регуляторы роста растений, гербициды и фунгициды.

2. Направления исследований физиологии растений

Фотосинтез, Дыхание растений, Водный режим растений, Минеральное питание растений, Транспорт веществ в растении, Рост и развитие растений, Фитоэнзимология -- изучение ферментов растений, Фитогормонология -- изучение фитогормонов, Раздражимость растений, Экология растений.

3. Физиология растений относится к числу экспериментальных наук. Экспериментом в физиологии называют изучение физиологического явления в искусственно создаваемых условиях. При этом может изучаться либо отдельная функция (фотосинтез, дыхание и т.д.), либо воздействие отдельного фактора на комплекс функций, или влияние комплекса воздействий на жизнедеятельность растения в целом (например, антропогенные воздействия). Опыты могут быть лабораторными и полевыми. Лабораторные эксперименты позволяют глубоко исследовать явления, происходящие на клеточном субклеточном и молекулярном уровнях.

 

3. Основные составляющие растительной клетки. Мембранные и немембранные компоненты. Отличия растительной клетки от животной

Растительная клетка состоит из жесткой клеточной оболочки и протопласта. Клеточная оболочка - это клеточная стенка и цитоплазматическая мембрана. Протопласт состоит из цитоплазмы и ядра. В цитоплазме находятся органеллы (рибосомы, микротрубочки, пластиды, митохондрии) и мембранные системы.Цитоплазма включает в себя еще цитоплазматический матрикс (основное вещество) в которое погружены органеллы и мембранные системы. От клеточной стенки цитоплазма отделена плазматической мембраной, которая представляет собой элементарную мембрану. В отличие от большинства животных клеток растительные клетки содержат одну или несколько вакуолей. Это пузырьки, заполненные жидкостью и окруженные элементарной мембраной (тонопластом). Плазматическая мембрана. Представляет собой бислойную фосфолипидную структуру. Для растительных клеток свойственны впячивания плазматической мембраны. Плазматическая мембрана выполняет следующие функции:-участвует в обмене веществ между клеткой и окружающей средой;-координирует синтез и сборку целлюлозных микрофибрилл клеточной стенки;-передает гормональные и внешние сигналы, контролирующие рост и дифференцировку клеток.

Ядро. Это наиболее заметная структура в цитоплазме эукариотической клетки. Ядро выполняет две важные функции:

-контролирует жизнедеятельность клетки, определяя, какие белки, и в какое время должны синтезироваться;-хранит генетическую информацию и передает её дочерним клеткам в процессе клеточного деления. Пластиды. Вакуоли, целлюлозная клеточная стенка и пластиды - характерные компоненты растительных клеток. Каждая пластида имеет собственную оболочку, состоящую из двух элементарных мембран. Хлоропласты зеленых растений и водорослей часто содержат зерна крахмала и мелкие липидные (жировые) капли. Хлоропласты можно считать основными клеточными органеллами, так как они стоят первыми в цепи преобразования солнечной энергии, в результате которого человечество получает, и пищу и топливо. В хлоропластах протекает не только фотосинтез. Они участвуют и в синтезе аминокислот и жирных кислот, служат хранилищем временных запасов крахмала. Хромопласты - пигментированные пластиды. Которые синтезируют и накапливают каротиноиды, которые придают жёлтую, оранжевую, красную окраску цветкам, старым листьям, плодам и корням. хромопласты могут развиваться из хлоропластов, которые при этом теряют хлорофилл и внутренние мембранные структуры, накапливают каротиноиды. Лейкопласты - непигментированные пластиды. Некоторые из них синтезируют крахмал (амилопласты), другие способны к образованию различных веществ, в том числе липидов и белков. На свету лейкопласты превращаются в хлоропласты. Митохондрии. Как и хлоропласты, митохондрии окружены двумя элементарными мембранами. В митохондриях осуществляется процесс дыхания, в результате которого органические молекулы расщепляются с высвобождением энергии и передачей её молекулам АТФ, основного резерва энергии всех эукариотических клеток. Митохондрии находятся в постоянном движении, перемещаясь из одной части клетки в другую, сливаясь друг с другом делятся. Вакуоли -это отграниченные мембраной участки клетки, заполненные жидкостью - клеточным соком. Они окружены тонопластом (вакуолярной мембраной). Тонопласт играет активную роль в транспорте и накоплении в вакуоли некоторых ионов. Концентрация ионов в клеточном соке может значительно превышать ее концентрацию в окружающей среде. При высоком содержании некоторых веществ в вакуолях образуются кристаллы. Чаще всего встречаются кристаллы оксалата кальция, имеющие различную форму. Вакуоли - места накопления продуктов обмена веществ (метаболизма). Это могут быть белки, кислоты и даже ядовитые для человека вещества (алкалоиды). Часто откладываются пигменты. Голубой, фиолетовый, пурпурный, темно-красный, пунцовый придают растительным клеткам пигменты из группы антоцианов. В отличие от других пигментов они хорошо растворяются в воде и содержатся в клеточном соке. Рибосомы. В рибосомах аминокислоты соединяются с образованием белков. Рибосомы располагаются в цитоплазме клетки свободно или же прикрепляются к эндоплазматическому ретикулуму (80S). Их обнаруживают и в ядре (80S), митохондриях (70S), пластидах (70S). Эндоплазматический ретикулум - это система транспортировки веществ: белков, липидов, углеводов, в разные части клетки. эндоплазматические ретикулумы соседних клеток соединяются через цитоплазматические тяжи - плазмодесмы - которые проходят сквозь клеточные оболочки.Эндоплазматический ретикулум - основное место синтеза клеточных мембран. В некоторых растительных клетках здесь образуются мембраны вакуолей и микротелец, цистерны диктиосом. Мембраны - динамические, подвижные структуры, которые постоянно изменяют свою форму и площадь. На подвижности мембран основана концепция эндоплазматической системы. Согласно этой концепции, внутренние мембраны цитоплазмы, кроме мембран митохондрий и пластид, представляют собой единое целое и берут начало от эндоплазматического ретикулума. Новые цистерны диктиосом образуются из эндоплазматического ретикулума через стадию промежуточных пузырьков, а секреторные пузырьки, отделяющиеся от диктиосом, в конечном итоге способствуют формированию плазматической мембраны. Таким образом, эндоплазматический ретикулум и диктиосомы образуют функциональное целое, в котором диктиосомы играют роль промежуточных структур в процессе преобразования мембран, подобных эндоплазматическому ретикулуму, в мембраны, подобные плазматической. В тканях, клетки которых слабо растут и делятся, постоянно происходит обновление мембранных компонентов. Клеточная стенка. Клеточная стенка отграничивает размер протопласта и предохраняет его разрыв за счет поглощения воды вакуолью. Клеточные стенки играют существенную роль в поглощении, транспорте и выделении веществ, а, кроме того, в них может быть сосредоточена лизосомальная, или переваривающая активность. Плазмодесмы. Это тонкие нити цитоплазмы, которые связывают между собой протопласты соседних клеток. Плазмодесмы либо проходят сквозь клеточную оболочку в любом месте, либо сосредоточены на первичных поровых полях или в мембранах между парами пор. Многие плазмодесмы формируются во время клеточного деления, когда трубчатый эндоплазматический ретикулум захватывается развивающейся клеточной пластинкой. Плазмодесмы могут образовываться и в оболочках неделящихся клеток. Эти структуры обеспечивают эффективный перенос некоторых веществ от клетки к клетке.

1. Отличия: В растительной клетке присутствует прочная и толстая клеточная стенка из целлюлозы

2. В растительной клетке развита сеть вакуолей, в животной клетке она развита слабо

3. Растительная клетка содержит особые органоиды – пластиды (а именно, хлоропласты, лейкопласты и хромопласты), а животная клетка их не содержит

 

Образование, строение и состав клеточной стенки. Первичная и вторичная клеточная стенка. Функции клеточной стенки.

В состав клеточной стенки входят структурные компоненты (целлюлоза у растений и хитин у грибов), компоненты матрикса (гемицеллюлоза, пектин, белки), инкрустирующие компоненты (лигнин, суберин) и вещества, откладывающиеся на поверхности оболочки (кутин и воск). Вторичная стенка S вместе с первичной стенкой P являются основными структурными частями клеточной стенки. Если углубляться в строение первичной структурной части, можно отметить, что её слой довольно тонок. К тому же, данная оболочка, в момент увеличения клеточной поверхности, является единственным элементом, имеющим в своём строении органоиды и протоплазму, другими словами – протопласт. В процессе деятельности протоплазмы, когда клеточная стенка начинает постепенно утолщаться, наблюдается возникновение так называемой вторичной стенки, которой было присвоено название S. Основными её составляющими являются ещё 3 слоя – внутренний, средний и наружный.

функции клеточных стенок растений. 1. Клеточные стенки обеспечивают отдельным клеткам и растению в целом механическую прочность и опору. В некоторых тканях прочность усиливается благодаря интенсивной лигнификации (небольшое количество лигнина присутствует во всех клеточных стенках). Особо важную роль играет лигнификация клеточных стенок у древесных и кустарниковых пород. 2. Относительная жесткость клеточных стенок и сопротивление растяжению обусловливают тургесцентность клеток, когда в них осмотическим путем поступает вода. Это усиливает опорную функцию во всех растениях и служит единственным источником опоры для травянистых растений и для таких органов, как листья, т. е. там, где отсутствует вторичный рост. Клеточные стенки также предохраняют клетки от разрыва в гипотонической среде. 3. Ориентация целлюлозных микрофибрилл ограничивает и в известной мере регулирует как рост, так и форму клеток, поскольку от расположения этих микрофибрилл зависит способность клеток к растяжению. Если, например, микрофибриллы располагаются поперек клетки, опоясывая ее как бы обручами, то клетка, в которую путем осмоса поступает вода, будет растягиваться в продольном направлении. 4. Система связанных друг с другом клеточных стенок (апопласт) служит главным путем, по которому передвигаются вода и растворенные в ней питательные вещества. Клеточные стенки скреплены между собой с помощью срединных пластинок. В стенках имеются небольшие поры, сквозь которые проходят цитоплазматические тяжи, называемые плазмодесмами. Плазмодесмы связывают живое содержимое отдельных клеток, т. е. объединяют все протопласты в единую систему, в так называемый симпласт. 5. Наружные клеточные стенки эпидермальных клеток покрываются особой пленкой — кутикулой, состоящей из воскообразного вещества кугина, что снижает потери воды и уменьшает риск проникновения в растение болезнетворных организмов. В пробковой ткани клеточные стенки по завершении вторичного роста пропитываются суберином, выполняющим сходную функцию. 6. Клеточные стенки сосудов ксилемы и ситовидных трубок флоэмы приспособлены для дальнего транспорта веществ по растению. Этот вопрос рассматривается в нашей статье. 7. Стенки клеток эндодермы корня пропитаны суберином и поэтому служат барьером на пути движения воды. 8. У некоторых клеток их видоизмененные стенки хранят запасы питательных веществ; таким способом, например, запасаются гемицеллюлозы в некоторых семенах. 9. У передаточных клеток площадь поверхности клеточных стенок увеличена и соответственно увеличена площадь поверхности плазматической мембраны, что повышает эффективность переноса веществ путем активного транспорта.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных