Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Для разработки мероприятий по борьбе с неблагоприятными природными процессами




Включение природы в процесс материального производства об­щества неизбежно ведет к изменению окружающей среды. Использо- \ вание природных ресурсов вызывает нарушение относительного рав- \ новесия, сложившегося между отдельными компонентами приро­ды. Это усиливает динамичность природных территориальных ком- j плексов, ускоряет современные физико-географические процес-! сы, многие из которых становятся неблагоприятными для различ- J ных отраслей хозяйства. Особенно страдает от неблагоприятных про- I цессов сельское хозяйство. Кроме того, неблагоприятные процес- \ сы наносят ущерб лесному хозяйству, горнодобывающей промыш­ленности, транспортным магистралям, населенным пунктам и т.д. f

Для предупреждения вредных стихийных процессов необходи­мы глубокие знания основных законов развития природы и изуче- |


ние специфических закономерностей, обусловленных ее местными особенностями, т. е. необходим широкий географический подход.

Природно-географической основой изучения неблагоприятных стихийных процессов является карта физико-географического райо­нирования. Физико-географические регионы, ранг которых оп­ределяется задачами и необходимой детальностью работ, объеди­няют в группы по сходству природных предпосылок развития не­благоприятных стихийных процессов. Для каждой группы даются основные особенности природы с упором на факторы, благопри­ятствующие развитию стихийных процессов и явлений, перечис­ляются характерные для нее вредные процессы, масштабы и ин­тенсивность их развития. При среднемасштабных исследованиях, когда объектом исследования являются районы, необходимо так­же тщательно проанализировать те виды хозяйственной деятель­ности, которые могут способствовать усилению развития небла­гоприятных процессов: при развитии почвенной эрозии — факти­ческое использование земель и системы обработки почв; при вет­ровалах — формы ведения лесного хозяйства, способы и приемы заготовки древесины; при развитии селей — использование лесов, состояние и формы хозяйственного использования речек, виды рубок леса в их верховьях и т.д.

В связи с тем, что набор и сочетание разнообразных неблаго­приятных процессов, интенсивность их проявления зависят преж­де всего от местных особенностей природы того или иного регио­на, разработка мер по борьбе с ними должна базироваться на де­тальном изучении природных условий конкретной территории. Эта задача решается путем полевых комплексных физико-географиче­ских исследований в средних и обобщенных крупных масштабах.

Как и любое прикладное исследование, изучение территории с целью разработки мероприятий по борьбе с неблагоприятными процессами имеет свою специфику. Эта специфика определяется целью и задачами исследования. Она кроется в определенном вни­мании исследователя к современным процессам, в стремлении познать их механизм, закономерности проявления и размещения и прослеживается на всех этапах работ.

Весь объем исследований по разработке мероприятий по борь­бе с неблагоприятными природными процессами и их предупреж­дению выполняется в четыре этапа: 1) общее знакомство с при­родными условиями района работ и неблагоприятными стихий­ными процессами; 2) полевые ландшафтные исследования, вклю­чающие раскрытие связей различных процессов с особенностями того или иного ПТК; 3) углубленное изучение механизма небла­гоприятных процессов, которое сопровождается получением ко­личественных показателей; 4) разработка мероприятий по борьбе с неблагоприятными природными процессами применительно к различным ПТК.


В ходе первого этапа собирают опубликованные фондовые тек-стовые и картографические материалы по двум направлениям: по природе территории исследования и встречающимся в ее пределах : неблагоприятным природным процессам; по механизму самих при-родных процессов, определению причин их возникновения, фак­торов формирования, особенностей развития в разных условиях. На основе анализа собранных материалов устанавливают: для ка­ких процессов имеются на территории исследования наиболее бла­гоприятные условия, с какими особенностями природы связано их проявление, какие процессы причиняют наибольший ущерб и, г следовательно, требуют первоочередного изучения, каковы общие закономерности пространственного размещения неблагоприятных i процессов. Все эти задачи решаются в камеральных условиях и под­готавливают исследователей к проведению полевых работ.

Задачи второго этапа решаются путем экспедиционных иссле­дований, в процессе которых не только ведут изучение и карто­графирование природных комплексов, но и фиксируют протека­ющие в комплексах современные физико-географические процес­сы. Их набор, интенсивность и особенности протекания тесно свя­заны со свойствами отдельных ПТК. В связи с этим каждый комп­лекс отличается от другого не только спецификой взаимосвязей компонентов, но и присущими ему стихийными процессами, что чрезвычайно важно для изучения пространственного размещения неблагоприятных процессов.

При полевом изучении ПТК необходимо вскрыть причины, j выяснить те особенности комплекса, которые способствуют раз-витию неблагоприятных процессов, выделить главный фактор их формирования, а также те факторы и черты природы, воздействие на которые позволит предупредить их возникновение или умень­шить интенсивность протекания.

Однако экспедиционные исследования по своей сути не дают возможности глубоко познать механизм протекающих в природе процессов. Они кратковременны, поэтому проводимые в их ходе ] наблюдения эпизодичны. Обычно они позволяют фиксировать не сами процессы, а их результаты, по которым ориентировочно оце­ниваются процессы. Например, объем и площадь конуса выноса j свидетельствуют об интенсивности эрозии в бассейне временного | водотока; размеры, количество и форма оползневых тел — об ополз­невых процессах, и т.д. Стремление получить количественные по­казатели, характеризующие неблагоприятные процессы, приве­ло физико-географов к детальному их изучению на ключевых уча- j стках.

Углубленное изучение механизма протекающих в природе про-цессов является задачей третьего этапа. Для ее решения необхо- j дима постановка стационарных или полустационарных наблюде- 1 ний. Эти наблюдения позволят оценить характер протекания про- I


цессов в разные сезоны года, роль различных факторов в измене­нии их интенсивности и направленности, влияние хозяйственной деятельности человека на их усиление либо ослабление. В результа­те стационарных исследований могут быть получены надежные количественные характеристики неблагоприятных процессов, что чрезвычайно важно для разработки мер по борьбе с ними.

Чем длительнее ряд наблюдений, тем больше достоверность их результатов, тем меньше элемент случайности в выводах. Для дос­тижения удовлетворительных результатов необходимы хотя бы трех-пятилетние наблюдения. Однако подобные стационарные наблю­дения проводились чрезвычайно редко. Перспективным для опре­деления механизма природных процессов и возможностей влия­ния различных факторов на их характер является моделирование процессов в лабораторных условиях подобно тому, как это делает­ся в отношении эрозионных и русловых процессов в эрозионной лаборатории МГУ.

Завершает все проведенные исследования разработка меропри­ятий по борьбе и предупреждению неблагоприятных процессов. На этом этапе роль географов сводится к тому, чтобы показать, на какие стороны природы и в каком направлении необходимо воз­действовать, чтобы получить ожидаемый эффект, какие особенно­сти природы при этом должны быть учтены. Сами географы не разрабатывают никаких мероприятий. Они могут лишь, учитывая специфику местных природных условий, рекомендовать наиболее эффективные из имеющихся уже разработанных мероприятий. Безусловно, для подобных рекомендаций географы должны самым детальным образом изучить уже разработанные мероприятия и на­копленный опыт их применения, чтобы исключить возможность ошибок в своих рекомендациях, ибо незнание не снимает ответ­ственности за данные рекомендации.

Как видим, роль физико-географов на разных этапах решения этой крупной комплексной проблемы неодинакова. Первые два этапа выполняют почти исключительно физико-географы (иногда с привлечением отдельных специалистов-отраслевиков). На треть­ем этапе физико-географы работают совместно с иными спе­циалистами: геоморфологами, гидрологами, климатологами, ле­соводами и т.д. в зависимости от набора процессов, за которыми ведется наблюдение. Физико-географу на этом этапе принадлежит координирующая роль. На четвертом этапе, как уже говорилось, физико-географ выступает лишь как консультант. Было бы абсо­лютно необоснованно ждать от географов полного решения всей этой проблемы.

Наш пятилетний опыт участия в выполнении комплексной про­блемы «Разработка мероприятий по борьбе с неблагоприятными природными процессами и их предупреждению в Украинских Кар­патах» показал, что в горах из процессов, наносящих вред, наибо-


лее распространены ветровалы, эрозионные, оползневые, обваль-но-осыпные процессы и селепаводковые явления.

При подготовке к полевым работам в ходе изучения литерату­ры и сбора фондового материала было установлено, что оползне­вые и эрозионные процессы наиболее широко развиты в районах, сложенных мелкоритмичным флишем, в зонах наиболее интен­сивных тектонических нарушений, а также на участках, сложен­ных толщей суглинистых плиоцен-четвертичных отложений. Све­дения, почерпнутые с геологических и топографических карт, позволили выделить участки преобладающего распространения этих процессов.

Полученные в лесокомбинатах сведения о ветровалах показали, что им подвержены прежде всего ельники, частично ветровалы наблюдаются в смешанных насаждениях с преобладанием ели. Наи­более стойки по отношению к ветровалам смешанные насаждения с преобладанием пихты и бука. Соответствующая обработка мате­риалов лесной таксации (кстати, на таксационных картах пихто­вые и еловые насаждения не разделяются, поэтому обрабатыва­лись таксационные описания) позволила оконтурить районы воз­можного распространения ветровалов.

Статистическая обработка материалов по ветровалам за 20 лет, предшествовавших исследованиям, раскрыла и некоторые зако­номерные их связи с иными факторами природной среды (крутиз­ной и экспозицией склонов, высотой местности и т.д.). Таким об­разом, целенаправленное изучение имеющихся материалов позво­лило установить некоторые особенности природных процессов, их зависимость от ряда факторов и районы наибольшего распростра­нения. Такая подготовка дала возможность наметить ключевые уча­стки для детального изучения. Однако в подготовительный период были обнаружены лишь некоторые закономерности и особенно­сти неблагоприятных процессов, основная работа по их изучению выполнялась в полевой период.

В поле проводилось ландшафтное картографирование и деталь­ное изучение урочищ. Была установлена неравномерность распро­странения неблагоприятных процессов в границах ареала, выде­ленного в подготовительный период, и их приуроченность к от­дельным ПТК. Определены связи неблагоприятных процессов со всем комплексом природных условий, их специфика и зависимость от особенностей ПТК, наиболее благоприятное сочетание различ­ных факторов, вызывающее резкое усиление неблагоприятных процессов и т.д.

Например, осыпи в границах территории, сложенной мелко­ритмичным флишем, обнаруживают приуроченность к среднекру-тым и крутым безлесным склонам. Не фиксировались они ни на участках, сложенных мощной толщей рыхлых отложений, ни на хорошо задернованных среднекрутых склонах.


На участках наиболее значительного проявления неблаго­приятных процессов проводилось детальное изучение их следов: при ветровалах — направление падения деревьев, характер рас­пространения корневой системы, объем воронок от корней по­валенных деревьев, характер материала, их слагающего, высота, крутизна и экспозиция склона ветровального участка, характер его границ, общее положение, водно-физические свойства грун­тов; при селях — объем конуса выноса селевого потока, характер его русла, особенности селесборов и т.д. Такое изучение отдель­ных ключевых участков позволило получить сведения по ха­рактеристике процессов и некоторые их количественные показа­тели.

Таким образом, в ходе полевых исследований была не только составлена ландшафтная карта и дана характеристика закартиро-ванных комплексов, но и получены сведения о причинах и зако­номерностях неблагоприятных процессов в рамках разных природ­ных комплексов.

Результаты изучения природных комплексов и современных физико-географических процессов были представлены в виде от­чета по теме, состоящего из ландшафтной карты и текстовой ча­сти.

На карте цветом или цветом в сочетании со штриховкой пока­заны различные классификационные единицы ПТК. Внемасштаб-ными знаками или фоновыми значками даны наиболее типичные для того или иного комплекса неблагоприятные процессы. В леген­де раскрыты особенности природных комплексов и характерные для них процессы. Карту дополняет текст с детальной характери­стикой всех выделенных комплексов и природных процессов с рас­крытием их специфики в разных комплексах и с количественными показателями.

Отчетная карта и текстовая характеристика являются исходным материалом для планирования углубленных исследований специа­листов. В то же время на карте показаны группы сходных по своим природным особенностям ПТК, для каждой из которых должна планироваться определенная система мероприятий по предупреж­дению неблагоприятных процессов.

Для успешной борьбы с неблагоприятными природными про­цессами в Карпатах было рекомендовано проводить углубленные стационарные и полустационарные исследования, установить бо­лее тесный контакт между коллективами ученых, которые зани­маются изучением природы, и производственными организация­ми, осуществляющими эксплуатацию природных ресурсов.

В связи с принятием правительственной программы «Охрана ландшафтов России и рациональное природопользование» подоб­ного рода прикладные ландшафтные исследования в скором вре­мени могут быть востребованы.


7.7. Географический прогноз

Прогнозирование в настоящее время приобрело очень большое значение почти во всех отраслях науки и хозяйства, и поэтому вполне закономерно, что прогнозированием заинтересовались и геогра­фы. В последнюю четверть XX столетия в географических изданиях постоянно публиковались работы по вопросам географического про­гноза. Однако проблема прогноза чрезвычайно сложна, и говорить о сложившейся методике географического прогнозирования пока еще преждевременно. Скорее речь может идти о научном поиске в решении этой сложной и многоплановой проблемы.

В системе наук формируется особая отрасль — прогностика, или наука о прогнозе, которая обобщает опыт прогнозирования, на­копленный в различных науках, разрабатывает общетеоретические вопросы и методы прогнозирования.

В настоящее время в прогнозировании используется до сотни различных методов, которые объединяют в несколько групп. Од­нако отбор методов, проверку их применимости производят в зави­симости от целей и объекта прогнозирования, поэтому прогноз — неотъемлемая часть той науки, в компетенции которой находится объект прогноза. По сути дела, прогнозирование само служит ме­тодом научных исследований, особенности применения которого в разных науках определяются спецификой самих наук.

По мнению академика Б. М. Кедрова (1971), прогнозирование — характерная черта определенной стадии развития науки, которую он назвал прогнозной, а предшествуют ей еще две стадии — эм­пирическая и теоретическая. Естественно, что различные науки достигают прогнозной стадии своего развития неодновременно.

Для прогнозирования какого-либо явления необходимо знать его сущность и основные закономерности его развития, а также харак­тер взаимосвязи прогнозируемого явления с другими и условия, при которых оно проявляется (Ю. Г. Саушкин, 1972). Следовательно, ! лишь при достаточно высоком уровне развития теории науки ее познавательные возможности расширяются до изучения явлений, которые еще не осуществились, но вполне могут произойти.

Прогнозирование — одна из наиболее актуальных и сложных современных научных проблем. Ее разработка обеспечивается уров­нем развития науки, а постановка прямо и непосредственно связана с запросами практики. Расширение и усложнение взаимодействия человеческого общества с окружающей средой поставили на пове-стку дня необходимость разработки географического прогноза.

Принципы географического прогнозирования вытекают из тео­ретических представлений о функционировании, динамике и раз­витии ПТК, включая и закономерности их антропогенной транс- \ формации. Основанием географического прогноза служат перемены в состоянии тех факторов, от которых могут зависеть предстоящие

I


изменения ПТК. Среди этих факторов есть природные (неотектони­ческие движения, изменения солнечной активности, саморазвитие ПТК и др.) и антропогенные (хозяйственное освоение террито­рии, гидротехническое строительство, рекультивация земель и т.д.).

В настоящее время антропогенное воздействие на природу по своей силе сопоставимо с самыми мощными природными факто­рами и может привести к необратимым изменениям природы. Пред­сказать направление и скорость изменения взаимоотношений при­роды, населения и хозяйства в их временном и территориальном аспекте — задача географического прогноза.

Географический прогноз тесно связан двусторонними связями с социально-экономическим прогнозом. Из социально-экономи­ческого географический прогноз черпает прогноз потребностей, а поставляет ему прогноз возможностей. Прежде всего это касается ресурсного прогноза. Однако и в отношении размещения отраслей хозяйства, в определении допустимой технологии производства географический прогноз, раскрывающий возможные изменения природной среды, служит своеобразным территориальным лими-татором для социально-экономического прогноза.

Сложность географического прогноза заключается в том, что он охватывает не только временные, но и территориальные из­менения взаимоотношений между тремя очень сложными систе­мами: природой, населением и хозяйством. Ю. Г. Саушкин (1976) отмечает, что главное в географическом прогнозе заключается «в научном предвидении видов и форм трансформации во времени пространственной неоднородности и пространственного сочета­ния и взаимодействия различных объектов (явлений, процессов) на земной поверхности».

Географический прогноз подразделяется на физико-геогра­фический, демогеографический и экономико-географический. Фи­зико-географический прогноз — это прогноз изменения окружающей природной среды, «это научная разработка представлений о при­родных географических системах будущего, об их коренных свой­ствах и разнообразных переменных состояниях, в том числе обус­ловленных непреднамеренными и непредусмотренными результа­тами деятельности человека» (В. Б. Сочава, 1974). В зависимости от полноты охвата компонентов географической оболочки физико-географический прогноз может быть частным или комплексным.

Частные физико-географические прогнозы характеризуют про­странственно-временные изменения одного какого-нибудь компо­нента или явления, либо группы тесно взаимосвязанных явлений. К частным прогнозам относятся прогноз изменения климата или стока, прогноз развития эрозионных процессов или засоления почв в связи с орошением, прогноз изменения растительного покрова или соотношения тепла и влаги и т.д. В климатологии и гидроло­гии прогнозные исследования проводятся давно, поэтому уже на-


коплен немалый опыт и отработана методика, хотя и не всегда еще достаточно надежная.

Задача комплексного (интегрального, по В. Б. Сочаве) физико-гео­графического прогнозирования — выявление тенденций изменения географической оболочки Земли и отдельных ПТК разного ранга под воздействием разнообразных природных и антропогенных факторов.

Прогноз развития ПТК как целостных систем — наиболее слож­ный прогноз, поскольку он должен одновременно охватывать весь комплекс природных связей с учетом антропогенного воздействия на них.

Любой комплексный физико-географический прогноз — это многофакторный и многокомпонентный, а значит, и вероят­ностный прогноз, ибо изменение одного из факторов влечет за собой и изменение взаимосвязей, что неизбежно отражается на характере, направлении и скорости изменения всего ПТК в целом. Таким образом, будущие изменения ПТК зависят от сочетания множества условий и факторов, поэтому комплексный физико-географический прогноз должен быть многовариантным.

Многомерность прогноза изменения ПТК — весьма существен­ная трудность, которую необходимо преодолевать в процессе про­гнозирования. Т. В. Звонкова (1972) указывает несколько путей пре­одоления барьера многомерности: разбиение целого на части, ко­торые легко изучать и просчитывать; использование простых по­казателей, отражающих сумму важных прогнозных факторов; объе­динение нескольких показателей в один и т.д. Все эти пути нахо­дятся в пределах соотношения анализа и синтеза в прогнозных исследованиях, но, чтобы их использовать, нужно найти такие группы тесно взаимосвязанных факторов и явлений, которые либо подчинены сходным закономерностям развития в пространстве и во времени, либо представляют собой единую причинно обуслов­ленную цепь, либо вызваны одной причиной и т.д. Только такие группы могут выступать в качестве самостоятельных единств, в качестве подсистем ПТК.

В зависимости от характера воздействия антропогенного факто­ра все прогнозируемые изменения ПТК могут быть объединены в три типа (К.К.Марков и др., 1974). К первому типу относятся из­менения природы, происходящие без всякого участия человека, под влиянием различных естественных факторов: неотектонических движений, гидроклиматических изменений, эволюционных изме­нений биогенных компонентов, как результат процесса самораз­вития ПТК и т.д.

Ко второму и третьему типам относятся изменения ПТК под влиянием антропогенного фактора. Они подразделяются на целена­правленные, т. е. такие, которые сознательно производятся или бу­дут производиться человеком, и побочные, сопутствующие, непред­виденные изменения. Последний тип изменений вызывает особен-


но большое беспокойство, так как они возникают в результате хозяйственной деятельности, прекратить которую человечество не в состоянии, и могут привести к крайне нежелательным послед­ствиям. Эти три типа изменений происходят с неодинаковой ско­ростью, в различных направлениях и характеризуются разными закономерностями, поэтому и прогнозируются самостоятельно, однако с учетом их взаимосвязей, а затем интегрируются для уста­новления общей тенденции изменения природы.

Комплексный физико-географический прогноз, характеризу­ющий пространственно-временные изменения ПТК, по террито­риальному охвату (масштабу) может быть глобальным, региональ­ным и локальным, что соответствует трем уровням дифференциа­ции географической оболочки (планетарному, региональному и топологическому).

Глобальные прогнозы не привязаны к конкретной территории, а ориентированы на изучение временных эволюционных тенден­ций развития Земли как среды обитания. Региональные ориенти­рованы не столько на временные, сколько на территориальные различия и решения. Объектами их являются обширные террито­рии в границах каких-то запланированных мероприятий. Регио­нальный прогноз разрабатывают с учетом сочетания на одной тер­ритории разных отраслей хозяйства (видов использования терри­тории) и различных генетических типов ПТК. Он помогает выяв­лять устойчивые тенденции изменения природы с учетом ее ланд­шафтной структуры и хозяйственного использования ее ресурсов. Локальный прогноз направлен на изучение возможных изменений природной среды при непосредственном воздействии различных крупных хозяйственных объектов: города, горно-рудных разрабо­ток, гидротехнического сооружения и т.д.

Что касается выбора временного отрезка для прогноза, то он определяется социальным заказом, возможностями географии (ее представлениями о допустимой точности определений) и продол­жительностью явлений, лежащих в основе изменений ПТК. По срокам прогнозирования все прогнозы делятся на краткосрочные (5—10 лет), среднесрочные (15 — 30 лет) и долгосрочные (50 — 70 лет). Разделение географических прогнозов на обозримую перспекти­ву по срокам прогнозирования на пять категорий, приведенное А. Г. Исаченко (1980, с. 233), на наш взгляд, недостаточно обосно­вано, так как не увязано со сроками социально-экономических прогнозов. Долгосрочные социально-экономические прогнозы со­ставляют на 25 — 30 лет, этот же период служит расчетным сроком при разработке схем районных планировок, а географический дол­госрочный прогноз должен служить предпроектной основой для их разработки, т. е. должен охватывать более длительный срок.

Наиболее актуальным считается прогноз в пределах ближайших десятилетий. Что касается краткосрочных прогнозов (до 5 лет), то


за столь короткий срок ПТК обычно не успевают заметно транс­формироваться, а переживают межгодовые природные ритмы и временные флуктуации, зависящие от колебаний метеоусловий.

Краткосрочный географический прогноз призван обеспечивать первую очередь схем и проектов районной планировки (5 —7 лет), j среднесрочный прогноз — вторую очередь (10—15 лет). Оба этих прогноза должны давать более широкую перспективу, позволя­ющую увидеть хотя бы первые результаты изменения природы под воздействием планируемых мероприятий, поэтому их предельные сроки должны быть более отдаленными, чем сроки социально-экономических прогнозов.

Что касается сверхкраткосрочных прогнозов, то они обычно яв­ляются не интегральными, касающимися изменения всего комплек­са в целом, а частными (прогноз урожайности, прогноз погоды и т.д.), либо предсказывают динамические сдвиги в современных процес­сах, но не дают собственно прогноза (предсказания) ожидаемых направленных изменений природных комплексов, их развития.

В настоящее время наибольший опыт накоплен в разработке ло­кальных прогнозов, связанных с проектированием крупных инже­нерно-технических сооружений. Менее разработаны вопросы регио­нального прогнозирования. Практически совсем не разработаны воп­росы глобального комплексного физико-географического прогноза.

Прогнозирование изменений ПТК обычно обусловлено соб­ственно природными факторами (К. Н. Дьяконов, 1972), наиболее динамичные из которых — климатические. При долгосрочном про­гнозировании оказывается необходимым учет и такого фактора, • как неотектонические движения.

Антропогенные воздействия как бы накладываются на тенден­ции естественных изменений природы, усиливая или ослабляя, а иногда и существенно видоизменяя их, однако предвидеть воз­можные антропогенные воздействия в отдаленном будущем труд­но, поскольку они будут зависеть от уровня развития техники и технологии производства, от использования тех или иных ресур­сов и создания новых синтетических материалов. Поэтому долго­срочный географический прогноз должен быть особенно гибким и многовариантным, должен предусматривать возможную заменяе­мость факторов и корректироваться в зависимости от уровня раз­вития производительных сил. Долгосрочный географический про­гноз должен стать предпрогнозной основой для разработки долго­срочных социально-экономических прогнозов.

При краткосрочном прогнозировании большинство естествен­ных природных процессов не успевает за прогнозный срок внести в ПТК заметные изменения, поэтому ведущее значение приобре­тает прогноз изменений природы под воздействием антропоген­ного фактора. Именно он определяет грядущие изменения ПТК. Краткосрочный прогноз опирается на современный уровень раз-


вития производительных сил, на современный уровень антропо­генного воздействия, поэтому может быть достаточно жестким.

Оптимальным при географическом прогнозировании представ­ляется прогнозный срок 25 — 30 лет, так как он позволяет просле­дить тенденции естественного развития природы и использовать материалы долгосрочного социально-экономического прогноза для оценки влияния антропогенного фактора.

Чтобы географический прогноз был достаточно достоверным и мог служить основой для управления изменениями окружающей среды, долгосрочного планирования и принятия административ­ных решений, он должен опираться на общие принципы прогно­зирования, разработанные наукой: исторический, сравнительный, эволюционный и др. Прогноз должен базироваться на устойчивых взаимосвязях между явлениями природы и взаимодействиях при­роды и общества, быть гибким, многовариантным, а сам процесс прогнозирования — непрерывным.

Работа по комплексному физико-географическому прогнози­рованию начинается с детального изучения существующих на изу­чаемой территории ПТК, их современных свойств, устойчивых связей и степени антропогенного изменения. Особенно большое значение имеет изучение пространственной структуры ПТК, ко­торая служит своеобразным территориальным лимитатором про­гнозируемых изменений. Необходимо также собрать материалы по прогнозируемым изменениям в составе населения и структуре хо­зяйства изучаемой территории для оценки влияния антропоген­ных факторов в будущем.

Изменение природы под воздействием естественных факторов прогнозируется на основе анализа процесса развития ПТК. Анализ прошлого, т.е. палеогеографический анализ, позволяет установить устойчивые тенденции развития ПТК и дает возможность прогнози­ровать эти изменения на будущее. Такой прогноз в значительной мере основан на сравнительно-географическом анализе. Сравнивая сходные ПТК, находящиеся на разных ступенях развития, мы уста­навливаем природные тенденции их развития. Сравнение комплек­сов, сходных по природным условиям, но в разной степени изме­ненных человеком, дает возможность судить о направлении, харак­тере, степени и скорости антропогенных изменений, устанавливать тенденции развития ПТК под влиянием антропогенного фактора.

Рассматривая будущее как продолжение прошлого и настояще­го, установленные тенденции развития можно распространить на прогнозируемый период. Для этого используются методы экстра­поляции. Правда, используя метод исторических экстраполяции при прогнозировании, нужно постоянно помнить о значительном уско­рении природных процессов под влиянием антропогенного фак­тора и о качественных изменениях природной среды в результате взаимодействия природы и общества.


Установленные на основе анализа прошлого и современной» состояний ПТК тенденции дальнейшего их развития на протяжен нии прогнозируемого периода будут изменяться в результате спон-Я танных изменений отдельных факторов или под воздействием хо-Я зяйственной деятельности человека. Учесть такие изменения ПТК позволяет метод «цепных реакций», дающий возможность просле-Я дить всю цепочку связей между различными процессами и явле-Я ниями и составить представление обо всем их комплексе.

При разработке географического прогноза для обоснования раз-1 личных инженерно-технических проектов используется метод «пе-Ш ребора вариантов», позволяющий путем анализа и просчета раз-Я личных вариантов воздействия на природу выбрать из них оптиШ мальный.

Одним из популярных и довольно простых методов прогнози-1 рования является метод экспертных оценок. Специфика его приме-1 нения в географическом прогнозировании заключается в подборе экспертов, которые должны быть не только специалистами своего! дела и иметь большой опыт, но и хорошо знать региональные осо- | бенности той территории, для которой разрабатывается прогноз. I

Таким образом, в процессе географического прогнозирования а широко используются методы географических исследований, а из Я обширного арсенала методов прогностики применяются в настоя- I щее время лишь те, которые по своему существу наиболее близки 1 методам исследования самой географической науки. Прежде всего щ это касается сравнительного метода, который в литературе по про­гностике получил название компаративного. В физико-географиче­ском прогнозировании этот метод особенно важен, так как он по­зволяет использовать территориальные и исторические аналогии.

К сравнительному методу тесно примыкают методы экстра­поляции, позволяющие распространять выводы, полученные при изу­чении нескольких элементов множества, на все множество. Геогра­фы в своих исследованиях издавна применяли территориальные экстраполяции, а при прогнозировании центр тяжести переносится на исторические экстраполяции, экстраполяции во времени.

Развитие методов моделирования в комплексных физико-геогра- '• фических исследованиях сопровождается одновременным внедре­нием их в географическое прогнозирование. Прежде всего это ка­сается логического и математического моделирования.

Постепенное совершенствование методов научного прогнози­рования и накопление опыта по разработке разнообразных геогра­фических прогнозов позволят создать достаточно надежную и хо­рошо отработанную методику комплексного физико-географиче­ского прогнозирования — составной части общего географическо­го прогноза, потребность в котором возрастает по мере дальней-шего усложнения взаимодействия природы и общества.


ЗАКЛЮЧЕНИЕ

Основная задача данного пособия — познакомить с методами комплексных физико-географических исследований, в первую оче­редь полевых, поскольку поле для географа-ландшафтоведа — это основная лаборатория для получения новых научных данных.

Не имея возможности из-за ограниченного объема пособия рас­сказать обо всем, мы остановились на главном. Из традиционных методов выбрали сравнительно-географический и картографиче­ский, реализуемые в виде полевых описаний и карт ПТК, отража­ющих их пространственное распространение и структуру, без чего невозможны сколько-нибудь серьезные дальнейшие исследования природных геосистем.

Из новых методов рассмотрены ландшафтно-геохимический и ландшафтно-геофизический, позволяющие раскрыть внутреннюю сущность процессов, определяющих функционирование и дина­мику ПТК. Из новейших методов коснулись лишь компьютерных. Однако компьютерная техника развивается столь стремительно, что сказанное будет очень скоро (и постоянно) требовать обнов­ления. Впрочем, в какой-то мере это относится ко всем методам. В третьем тысячелетии перед географической наукой встали новые задачи, связанные с глобальными экологическими пробле­мами и разработкой проектов устойчивого развития на всех уров­нях организации общества. В связи с этим сейчас, как никогда ра­нее, остро ощущается необходимость интеграции науки.

А. Г. Исаченко на X съезде Русского географического общества (1995) говорил о большой разобщенности в системе отраслей фи­зической географии, отмечая вместе с тем, что связи физической географии с естественными науками все же теснее, чем со своей «сестрой» — экономической географией. И этот разрыв опасен. Нужны совместные комплексные работы — «двуединая» геогра­фия должна быть единой.

В настоящее время усилились тенденции экологизации и гума­низации географии. Несомненно, что будут изменяться и методы географических, в том числе комплексных физико-географических

исследований.

Развитие географии шло от «арифметики» (сугубой конкрети­ки) к «алгебре» (классификация, типизация). Долго длилась экс­педиционная эпоха, для которой хватало неисследованных земель.

1 1 Жучком 305


После ее завершения настало время перехода к стационарным ис­следованиям, к «дифференциальному и интегральному исчисле- 1 нию», рассмотрению скоростей и ускорений, анализу временных! и пространственных приращений. Теперь осуществляется переход к кибернетическим системным, нелинейным (фрактальным) яв- 1 лениям. В последние десятилетия открыты формальные законы, I описывающие унифицированное поведение разнообразных при­родных и антропогенных систем, найдены универсальные ко- 1 эффициенты, определяющие условия перехода в новое качество для любых процессов: роста популяции, перехода от ламинарного движения к турбулентному, перехода ритма сердца к фибрилля­ции, химических реакций, вплоть до поведения человека, эконо­мики и политики (X.О.Пайтген, П.Х.Рихтер, 1993). На этой ос­нове грядет новый пересмотр методов, возникает проблема преемственности.

Мы видим только то, что знаем. Человек при восприятии стре­мится к «разложению» сложных конфигураций на более простые и к постоянному синтезу. Восприятие есть воссоздание реальности (Г.Хакен, М.Хакен-Крель, 2002). Из этого следует, что научить видеть, значит, научить воссоздавать образы из деталей. Психо­физиологи установили, что восприятие, во-первых, подчиняется | формальным законам, общим для всех систем (кибернетическим), во-вторых, постоянно самоорганизуется.

Чтобы «переделать образ», например, при обучении, нужно передать умение видеть детали (анализировать) и умение «соби­рать» из этих деталей целое. Одно время характеристика террито-рии давалась методом покомпонентного анализа. Впоследствии этот метод так долго порицали, противопоставляя комплексному, ланд­шафтному видению территории (которое, собственно, и заключа­ется в способности воссоздать целое из частей), что он почти ушел из школьных учебников и уходит из вузовских. Наступила другая '.] крайность. Но ведь это двуединый процесс: без анализа не может быть синтеза. Надеемся, что данное пособие поможет в этом, т. е. поможет «видеть».

Осваивать или разрабатывать новое, осуществлять совместные работы с представителями родственных или отдаленных научных направлений можно только хорошо усвоив азы собственной дис­циплины, наращивая на этом фундаменте все, что потребуется для достижения поставленной цели.

В заключение еще раз о полевых исследованиях. Они ничем не заменимы. Сколько бы мы ни читали литературы, сколько бы ни, изучали самых прекрасных карт, аэрофото- и космоснимков, фо­тографий, мы не получим полного, всестороннего географического представления об объекте исследования. Только благодаря поле­вым работам и последующей тщательной обработке материалов (разумеется, с использованием опыта предшественников) мы до-


бьемся того, что наши модели (графические, текстовые, мыслен­ные и прочие) будут более или менее адекватны географической действительности.

Поле формирует начинающего исследователя. От того, в какой ландшафтной обстановке будущий ученый начинал свои полевые исследования или в каких ландшафтах он большей частью рабо­тал, в большой степени зависит характер его научного мышления, теоретических взглядов, концептуальных построений. Вот почему, отдавая преимущественное внимание изучению какого-либо регио­на, всегда полезно поработать и в других. Это расширяет географи­ческий кругозор и позволяет освободиться от ограниченных (иногда не совсем правильных) представлений.

Авторы надеются, что настоящее пособие будет полезным мо­лодым географам, собирающимся заниматься физико-географи­ческими исследованиями.


СПИСОК ЛИТЕРАТУРЫ

Основная литература

Беручашвили Н.Л., Жучкова В. К. Методы комплексных физи­ко-географических исследований. — М.: Изд-во Московского ун-та, 1997.

Дьяконов К.Н., Касимов Н.С., Тикунов B.C. Современные методы географических исследований. — М.: Просвещение, 1996.

Жучкова В.К. Организация и методы комплексных физико-геогра­фических исследований. — М.: Изд-во Московского ун-та, 1977.

Жучкова В.К., Раковская Э.М. Природная среда — методы ис­следования. — М.: Мысль, 1982.

Исаченко А. Г. Методы прикладных ландшафтных исследований. — Л.: Наука, 1980.

Макунина Г.С. Методика полевых физико-географических иссле­дований. Структура и динамика ландшафта. — М.: Изд-во Московского ун-та, 1987.

Дополнительная литература

Авессаломова И. А. Геохимические показатели при изучении ланд­шафтов. — М.: Изд-во Московского ун-та, 1987.

Альбом образцов топографического дешифрирования аэроснимков // Тр. ЦНИИГАиК. - 1967. - Вып. 180.

Альбом дешифрирования многозональных аэрокосмических снимков. Методика и результаты. — Берлин: Академи-форлаг. — М.: Наука, 1982.

Арманд Д.Л. Наука о ландшафте. — М.: Мысль, 1975.

Беручашвили Н.Л. Методикаландшафтно-географическихиссле­дований и картографирование состояний природно-территориальных ком­плексов. — Тбилиси: Изд-во Тбилисского ун-та, 1983.

В и д и н а А. А. Методические вопросы полевого крупномасштабного ландшафтного картографирования // Ландшафтоведение. — М.: Изд-во АН СССР, 1963. - С. 102-127.

Видина А.А., Джерпетов И.В., Низовцев В.А. Факторы ландшафтной дифференциации и ландшафты Сатинского учебного по­лигона // Комплексная географическая практика в Подмосковье. — М.: Изд-во Московского ун-та, 1980. — С. 153 — 202.

Викторов А. С. Рисунок ландшафта. — М.: Мысль,1986.

Викторов СВ. Использование индикационных географических ис- следований в инженерной геологии. — М.: Недра, 1966.

Викторов СВ., Илюшина М.Т., Кузьмина И.В. Эколого- генетические ряды растительных сообществ как индикаторы природных процессов // Экология. — 1970. — № 6.


Владимиров В.В., Фомин И. А. Основы районной планировки.— М.: Высшая школа, 1995.

Волобуев В.Р. Введение в энергетику почвообразования. — М.:

Наука, 1974.

Географическое обоснование экологических экспертиз. — М.: Изд-во

Московского ун-та, 1985.

Геоэкологические принципы проектирования природно-технических геосистем. — М.: Институт географии АН СССР, 1987.

Глобальные проблемы современности и комплексное землеведение. — Л.: Изд-во АН СССР, 1988.

Гунин П.Д., Востокова Е.А. Ландшафтная экология. — М.: Био-

информсервис, 2000.

Дроздов К.А. Крупномасштабные исследования равнинных ланд­шафтов. — Воронеж: Изд-во Воронежского ун-та, 1989.

Дьяконов К.Н. Влияние крупных равнинных водохранилищ на леса прибрежной зоны. — Л.: Гидрометиздат, 1975.

Живчин А.Н., Соколов B.C. Дешифрирование аэрофотографи­ческих изображений. — М.: Недра, 1980.

Исаченко А.Г. Ландшафтоведение и физико-географическое райо­нирование. — М.: Высшая школа, 1991.

Книжников Ю.Ф., Кравцова В.И. Аэрокосмические иссле­дования динамики географических явлений. — М.: Изд-во Московского

ун-та, 1991.

Книжников Ю.Ф. Аэрокосмическое зондирование. Методология, принципы, проблемы. — М.: Изд-во Московского ун-та, 1997.

Крауклис А.А. Проблемы экспериментального ландшафтоведе-ния. — Новосибирск: Наука, 1979.

Ландшафтное проектирование: принципы, методы, европейский и российский опыт. — Иркутск: Государственный центр экологических про­грамм, 2002.

Мамай И.И. Динамика ландшафтов. — М.: Изд-во Московского

ун-та, 1992.

Мамай И.И. О расчете стоимости ландшафтной съемки // Геогра­фия и природные ресурсы. — 1997. — № 4. — С. 126—132.

Методы дендрохронологии. Часть I. Основы дендрохронологии. Сбор и получение древесно-кольцевой информации / С. Г. Шиятов, Е.А.Ваганов, А. В. Кирдянов и др. — Красноярск: Краен. ГУ, 2000.

Николаев В.А. Классификация и мелкомасштабное картографиро­вание ландшафтов. — М.: Изд-во Московского ун-та, 1978.

Николаев В.А. Проблемы регионального ландшафтоведения. — М.: Изд-во Московского ун-та, 1979.

Николаев В.А. Ландшафтоведение. — М.: Изд-во Московского

ун-та, 2000.

О дум Ю. Основы конструктивной географии. — М.: Мир, 1975.

О дум Ю. Основы конструктивной географии. — М.: Просвещение, 1986.

О дум Ю. Основы эколого-географической экспертизы / Под ред. К.Н.Дьяконова, Т.В.Звонковой. — М.: Изд-во Московского ун-та, 1992.

Пайтген Х.О, Рихтер П.Х. Красота фракталов. Образы комп­лексных динамических систем. — М.: Мир, 1993.


Петров К.М. Подводные ландшафты: теория, методы исследова-| ния. —Л.: Наука, 1989.

Преображенский B.C., Александрова Т.Д., Куприяно- I в а Т.П. Основы ландшафтного анализа. — М.: Наука, 1988.

Рекомендации по охране окружающей среды в районной планировке. — Я М.: Стройиздат, 1986.

Руководство по ландшафтному проектированию. — М.: Государствен- ный центр экологических программ, 2000. — Т. I; 2001. — Т. II.

Солнцев Н. А. Учение о ландшафте: избранные труды. — М.: Изд-во } Московского ун-та, 2001.

Снытко В. А. Геохимические исследования метаболизма вещества в, геосистемах. — Новосибирск: Наука, 1978.

Сочава В.Б. Введение в учение о геосистемах. — Новосибирск: Наука, 1978.

X а н в ел Дж., Н ь ю с о н М. Методы географических исследований / Пер. с англ. — М., 1977. — Вып. 2. Физическая география.

Чалая И.П., Куконенко М.В., Черкасова Л.М. Исследова­ние природных условий для архитектурно-планировочного проектирова­ния. — М.: Стройиздат, 1973.


ПРИЛОЖЕНИЯ

Вводные замечания

В «Приложениях» дано краткое изложение компьютерных методов и описания электронных приборов, используемых в физико-географиче­ских исследованиях (приложение 1); помещено несколько фрагментов раз­ного масштаба карт физико-географического районирования и ландшафт­ных с легендами, в том числе с табличными (приложения 2 — 6). На этих фрагментах мы пытались показать, как масштаб картографирования влия­ет на содержание карт и, в первую очередь, на ранг изображаемых на картах ПТК. Впрочем, о картах физико-географического районирования можно сказать, что в отношении масштаба они практически «безразмер­ны», так как изображают крупные ПТК (выше таксономического ранга ландшафтов) и могут быть представлены и вполне «читаемы» даже при очень сильном уменьшении. Так, на рис. 1 приложения 2 изображен фраг­мент карты «Физико-географическое районирование СССР» (европей­ская часть), где выделены физико-географические страны, зональные области и провинции. Фрагмент по сравнению с оригиналом уменьшен здесь более чем в два раза и мог бы быть уменьшен еще больше. Похожая ситуация и с рис. 2 приложения 3. Не случайно изображенная карта назва­на «Карта ландшафтов Брянской области», а не «Ландшафтная карта...», потому что оригиналы этой карты созданы в масштабах 1: 500 000 и круп­нее без расшифровки морфологической структуры ландшафтов. Эта кар­та могла бы быть тоже названа картой физико-географического райони­рования.

Два следующих фрагмента (рис. 3 приложения 4 и рис. 4 приложения 5) типичные ландшафтные карты масштабов 1:200 000 и 1:25 000, где изо­бражена морфологическая структура ландшафтов, разумеется, с разной степенью подробности. К обеим названным картам, а также к «Карте ланд­шафтов Брянской области» приложены фрагменты легенд, показыва­ющих компонентную структуру ПТК, а также некоторые другие их харак­теристики.

В приложении 6 (рис. 5 и 6) даны образцы фрагментов карт масштаба 1:200 000 территории Воронежской области, существенно отличающиеся от приведенных выше (см. сопровождающую текстовую характеристику). Последние три приложения — это образец бланка описания фации (приложение 7), «Эдафическая сетка» (по П. С. Погребняку) с некоторы­ми изменениями, внесенными А.А.Видиной (приложение 9) и «Услов­ные обозначения для полевого крупномасштабного ландшафтного кар­тографирования» (по А.А.Видиной, приложение 8).


ПРИЛОЖЕНИЕ 1 ]

1. Компьютерные методы и электронные приборы

1.1. Компьютерные методы

Как и в других дисциплинах, применение компьютеров в географии облегчает расчетные, статистические работы, построение диаграмм и гра­фиков, обработку текста, графических изображений, создание баз дан­ных, задачи математического моделирования. Полезны электронные спра­вочники. Особый интерес для географов представляют ГИС-технологии (куда фактически входит все вышеперечисленное), а также GPS-навига-ция, объединение ГИС с Интернет и сотовыми телефонами.

Новые информационные технологии уже значительно поменяли стиль и методы географических исследований, но основное их внедрение еще только начинается. Можно выделить два аспекта влияния кибернетики: первый — технический и второй — идейный (концептуальный).

Технический аспект. Как и в других дисциплинах, в физико-географи- I ческих исследованиях велика техническая роль компьютеров. Во-первых, в работе географов значительное место занимают редактирование и печать текстов; чрезвычайно важна возможность обработки изображений, фотогра­фий. Во-вторых, особую роль играют методы определения и привязки место­положения объектов на поверхности Земли (GPS-навигация). В-третьих, широки возможности создания автоматизированных систем — анализа­торов геохимических и геофизических параметров для стационарных, полу­стационарных и даже экспедиционных мобильных станций (датчики под управлением компьютера).

Концептуальное влияние. Идейное влияние кибернетики как учения о системах существенно затрагивает саму методологию географии. Долгое время географы объясняли сущность системного подхода свойством эмерджентно-сти (целое есть нечто большее, чем простая сумма частей) и зачастую довольствовались интуитивным пониманием системы, как совокупности элементов с более тесными внутренними связями. Но этим не ограничива­ется специфика системного подхода. Утверждение «все связано со всем» так же неконструктивно, как и «ничто ни с чем не связано»: они оба не дают нам знания, как следует действовать. Весь вопрос в том, как именно связано. Основное методическое преимущество системных исследований — это четкое осознание существования природной «автоматики», выявление природных «программ»: обнаружение системных переключателей, работы обратной связи, замыкающей причинно-следственную цепочку в цикл (см. раздел 2.3); определение их роли в саморегуляции геосистем; возможно­сти точечно адресного антропогенного воздействия на системные регуляторы при минимизации сил и средств; более четкая оценка последствий этого.

Хотя в физической географии (и в ландшафтоведении особенно) все­гда уделялось внимание учету соседства, функционирования геосистем, связи компонентов, тем не менее многое делалось на интуитивном или на предметном уровне (на конкретных географических примерах). Нужен


пересмотр (особенно в связи с открытием явления фрактальности) по­нимания системных законов. В технических, экономических и социальных науках находится все больше доказательств значительных аналогий си­стемного устройства природы и общества. Природа — не автоматика, но факт, что многие удивительные природные явления объясняются чистым автоматизмом.

После господства исключительно вещественно-энергетического под­хода трудно дается новая парадигма — понимание того, что передача ин­формации кардинально отличается от передачи вещества и энергии прежде всего своей нелинейностью: воздействие бесконечно малого количества вещества и энергии на «узловые точки» (системные регуляторы) может вызвать бесконечно большие последствия.

GPS-навигация. Определение и «привязка» местоположения объектов (позиционирование) — важная часть любого географического исследова­ния. Долгое время она выполнялась способами наземной триангуляции, потом добавились методы дешифрирования аэрофотоматериалов, в на­стоящее время используют геостационарные (находящиеся на постоян­ных орбитах) спутники Земли. Наиболее популярна и общедоступна аме­риканская G. P. S. — Global Positioning System (система глобального пози­ционирования).

Принцип позиционирования (определения позиции в пространстве) основан на определении расстояния до объекта. Расстояние можно вы­числить, умножив время прохождения сигнала на его скорость (скорость света). Зная лишь расстояние, т.е. радиус сферы вокруг объекта, еще нельзя узнать его местоположение. Но если мы знаем радиусы двух сфер от двух объектов, то можем найти их пересечение (если они пересекаются, то областью их пересечения будет окружность). Зная расстояние до третьего объекта, получим более точный результат и т.д. Для непрерывного слеже­ния нужно все время решать систему уравнений. Ясно, что все это стало возможным лишь благодаря быстродействию вычислительных компью­терных систем и точности определения времени.

Достаточная точность обеспечивается только при применении на спут­никах атомных часов и одновременного функционирования большого количества спутников. Стандартные GPS-приемники могут принимать сигналы от 12 спутников сразу.

Высокая точность (необходимая в первую очередь для военных целей) получается при наличии на геостационарных орбитах около трех десятков спутников, причем определяемый объект должен «видеть» одновременно хотя бы четыре из них, поскольку это диктуют условия распространения коротких волн (1200—1500 МГц). Такие ультракоротковолновые сигналы Распространяются аналогично световым волнам, поэтому на их пути не Должно быть препятствий. «Тень» от высоких домов, сооружений, даже от Деревьев в лесу, снижает точность. Могут быть помехи «переотражения» °т указанных объектов, как от зеркал.

Помехи могут создавать также атмосферные условия: воздушные мас­сы разной плотности и состава могут действовать как линзы; плотность Ионосферы, стратосферы, атмосферы хотя и незначительно, но увеличи­вает время прохождения сигнала. Как и при любом виде навигации, точ­ность ухудшается, если «видимые» спутники находятся в одном направ-


лении, и улучшается, если они разнесены по разным направлениям от объекта. Ошибка атомных часов на спутнике тоже очень сильно влияет на точность. Отсюда возможности намеренного искажения: путем ограниче­ния доступа, шифрования сигнала, точности часов, точности самих на­вигационных данных. В основном позиционирование во всем мире сейчас зависит от хозяина спутников — от США.

GPS-приемники применяют как отдельно (для контроля за прохож­дением маршрута), так и в комплекте с ноутбуками или карманными компьютерами, что позволяет сразу наносить маршрут и положение то­чек наблюдения на электронную карту. Обычно, определяя положение на местности, можно рассчитывать на точность около 100 м; специальные методы с участием наземных станций могут повысить ее примерно в де­сять раз.

Система применяется в спасательных службах, навигации (морской, авиационной), в автомобильном и пешем туризме, устанавливается на автомобилях как противоугонная, облегчает работу с картами во многих отраслях науки и практики.

Проблемы стоимости и корректного использования методов. Компью­терные технологии очень облегчают работу, но и создают особые пробле­мы — требуют больших материальных затрат на оборудование и обучение (программы ГИС стоят несколько тысяч долларов). Кроме того, все это должно периодически обновляться, так как быстро устаревает. Немногие исследователи пишут свои собственные программы, которые лучше при­способлены именно для данной конкретной задачи.

Программы известных компаний, как правило, наиболее универсаль­ны, т.е. подходят большим группам пользователей. Они предоставляют все больше поистине необыкновенных возможностей, но являются «закры­тыми» для рядового пользователя, который не может и (или) не хочет знать, как они работают. «Закрытая» программа — полностью «готовый» продукт, созданный на продажу, с защитой от вскрытия.

Не имея возможности соревноваться в одиночку с огромными корпо­рациями, создающими программные продукты, пользователь вынужден слепо доверять им. Если при работе с текстом или изображениями конт­ролировать результат довольно легко, то пакеты программ статистики и ГИС это не всегда позволяют. Возникает соблазн передоверить компьюте­ру ряд исследовательских функций. Отсюда проблема корректного исполь­зования компьютерных методов, для чего их надо хорошо знать.

Например, статистические пакеты типа STATISTICA. Они сделаны для больших выборок (например, больших массивов данных американских страховых компаний). Гораздо менее известны отечественные програм­мы, позволяющие применять алгоритмы для малых выборок, а малые выборки нередко встречается в географии из-за трудностей типизации, классификации (из-за природного разнообразия).

Связи между элементами системы (процессами, компонентами и т.д.) обычно ищут путем вычисления коэффициентов корреляции или корре­ляционных функций. Это сравнение двух (или нескольких) процессов во времени, или сравнение одновременного изменения каких-либо пара­метров в пространстве. Если эти изменения в какой-то степени совпада­ют, то делается вывод об их связи.


Однако наличие или отстутствие корреляции — только повод для раз­мышления, сигнал к дальнейшему анализу. Это свидетельство того, что связь может быть. Бывают совпадения совершенно разных, независимых процессов со своей внутренней автоматикой, а может быть и «разнобой» в работе элементов одной и той же системы.

Наоборот, не найдя корреляции в процессах, тем не менее нельзя делать окончательный вывод об отсутствии целостности геосистемы. По­лученные данные требуют более содержательного качественного анализа, с использованием всего географического интеллектуального потенциала исследователя.

Метод ошибочен в том случае, когда результат вычисления корреля­ции принимается за итоговый, тогда как он может быть лишь началом исследования. В то же время нельзя вовсе отказываться от анализа перио­дических процессов — они пронизывают всю органическую жизнь и по­всеместно встречаются в неживой природе. Это очень трудоемкие опера­ции, которые стали более или менее доступны лишь с появлением ком­пьютеров.

Работа с изображениями. Для этого существует множество разнообраз­ных программ, в том числе и бесплатных. Графические программы делят­ся на растровые и векторные. Растровые — типа известной Photoshop. При большом увеличении можно увидеть, что изображение представлено от­дельными мелкими квадратиками (пикселлами). Чем лучше качество изо­бражения, тем более мелкими должны быть пикселлы, и тем их больше, а значит, тем больше загружена память. Толщину готовой линии при этом способе трудно изменить, линию трудно сгладить.

В векторных программах типа Corel DRAW контуры представлены в виде отрезков линий определенной кривизны. Эти отрезки записываются в аналитическом виде, как графики функций, что позволяет экономить объем записываемой информации и легко менять масштаб, толщину ли­ний, их сглаживание. Оба способа (и растровый и векторный) имеют свои преимущества. Существуют также программы векторизации (перевода ра­стровых изображений в векторные) и, наоборот, растрирования.

Поскольку эти программы могут работать лишь как приложения к опе­рационной системе Microsoft Windows, сначала надо купить ее лицензи­онную копию, а потом сами программы. Существует известная проблема противостояния сторонников платных программ, ярким примером кото­рых является «империя» корпорации Microsoft, чьи программы лидируют по широте распространения и по стоимости, и сторонников бесплатно­сти компьютерного обеспечения. В последние годы среди исследователей повысился интерес к использованию другой операционной системы — UNIX, или LINUX, которая «открыта», т.е. бесплатна, и позволяет пользо­вателю лучше понимать, как она работает, но набор графических про­грамм для нее меньше, и они не столь совершенны. Некоторые из них небесплатны, и по мере их совершенствования возрастает стоимость. ГИС также стоят очень дорого, поэтому рационально корпоративное (совме­стное) пользование. Ряд таких программ поставлялся с большими скид­ками для высших учебных заведений.

ГИС-технологии. ГИС — это геоинформационные системы. Под сло­вом ГИС понимают и программы для создания этих систем, и даже всю


область информационных технологий. Этим словом обозначают и кон- ; кретные приложения для пользователя, например электронные карты мира, России, электронная схема города. Обычно ГИС — это карта плюс база данных, плюс аналитические блоки. Карта состоит из нескольких «слоев», или «тем». Это могут быть отдельно леса, отдельно дороги, насе- * ленные пункты, гипсометрическая раскраска, могут быть отраслевые кар- I ты, как в атласах. Отраслевые карты тоже могут быть разделены на темы: I отдельно цвет, отдельно штриховка и т.д.

Особую ценность ГИС составляет их связь с собственными базами дан­ных, позволяющая легко получить необходимую справку о каждом объекте карты. Аналитические блоки ГИС автоматизируют наиболее часто востре-буемые процедуры, например определение расстояния от одного объекта до другого.

Чтобы создать ГИС для определенного региона, объекта, необходимо 1 имеющиеся бумажные карты отсканировать (с помощью сканера переве­сти в электронное растровое изображение) и потом хранить в этой же «растровой форме, или «оцифровать», т.е. с помощью специальных про­грамм, входящих, например, в комплект MAPINFO или Arc View (или I отдельных программ), перевести необходимые контуры в векторную фор-му, ГИС работают и с растровыми, и с векторными изображениями бла- годаря своим встроенным графическим пакетам, могут «понимать» до- 1 вольно широкий ассортимент электронных графических изображений, на- ] пример в форматах *.tif, *.bmp, и т.д.

Кроме того, условные обозначения, легенду к карте, тексты, фото- j графии, схемы, АФС и другие сведения надо занести в базу данных, свя­занную с электронной картой. Графические файлы и файлы базы данных разные, но связаны друг с другом. Изменения, внесенные в один файл, тем или иным способом сказываются на всех с ним связанных, тогда как ; файл вне ГИС-системы — это просто отдельная картинка или таблица, или текст. Есть проблемы совместимости разных ГИС. Мешает не только техническая несовместимость разных файлов, разных наборов данных. Как и в человеческом сознании, объективная географическая реальность мо­жет быть изображена в ГИС самыми разнообразными способами, а если два способа несовместимы, то никакая программа не сможет их согласо­вать. Из этого следует важный методический вывод: предстоит выработка стандартных метаописаний для их взаимной совместимости, что опять-таки связано с конфликтом индивидуальности геосистем и необходимо­сти их типизации.

Начинать работу следует с «привязки» карты к системе координат — без этого не удастся воспользоваться всеми преимуществами ГИС. Отли­чие ГИС от других информационных систем как раз в том, что вся инфор­мация специальным образом пространственно привязана. Каждая карта должна создаваться в определенной геодезической системе координат, в принятой картографической проекции, в заданной системе размерностей с использованием теории, методов и технологий соответствующих науч­ных дисциплин. Отсюда ясно, что следует знать и о возможности искаже­ний, об их допустимых значениях.

Примеры программ. Есть известные компании — производители про­граммного обеспечения для ГИС, например ESRI. Это частная фирма,


название которой расшифровывается как Институт Исследования Си­стем Окружающей Среды (Environmental System Research Institute).






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных