Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Меры центральной тенденции




Меры центральной тенденции (м. ц. т.) – это величины, вокруг которых группируются остальные данные. Эти величины являются как бы обобщающими всю выборку показателями, что, во-первых, позволяет по ним судить о всей выборке, а во-вторых, дает возможность сравнивать разные выборки, разные серии между собой. К мерам центральной тенденции относятся: среднее арифметическое, медиана, мода, среднее геометрическое, среднее гармоническое. В психологии обычно используются первые три.

Среднее арифметическое (М) – это частное от деления всех значений (X) на их количество (N): М = SX / N.

Медиана (Me) – это значение, выше и ниже которого количество отличающихся значений одинаково, т. е. это центральное значение в последовательном ряду данных.

Примеры: 3, 5, 7, 9, 11, 13, 15 Me = 9.

3,5,7,9,11,13,15,17 Me =10.

Из примеров ясно, что медиана не обязательно должна совпадать с имеющимся замером, это точка на шкале. Совпадение происходит в случае нечетного числа значений (ответов) на шкале, несовпадение – при четном их числе.

Мода (Мо) – это значение, наиболее часто встречающееся в выборке, т. е. значение с наибольшей частотой.

Пример: 2, 6, 6, 8, 9, 9, 9, 10 Мо = 9.

Если все значения в группе встречаются одинаково часто, то считается, что моды нет (например: 1, 1, 5, 5, 8, 8). Если два соседних значения имеют одинаковую частоту и они больше частоты любого другого значения, мода есть среднее этих двух значений (например: 1,2,2,2,4,4,4, 5,5,7 Мо = 3). Если то же самое относится к двум несмежным значениям, то существует две моды, а группа оценок является бимодальной (например: 0,1,1,1,2,3,4, 4, 4, 7 Мо = 1 и 4).

При выборе м. ц. т. следует учесть, что:

1) в малых группах мода может быть нестабильна.

Пример: 1,1,1,3,5,7,7,8 Мо = 1.

Но стоит одной единице превратиться в нуль, а другой – в двойку, и Мо = 7;

2) на медиану не влияют величины «больших» и «малых» значений;

3) на среднее влияет каждое значение.

Обычно среднее применяется при стремлении к наибольшей точности и когда впоследствии нужно будет вычислять стандартное отклонение. Медиана – когда в серии есть «нетипичные» данные, резко влияющие на среднее (например: 1, 3, 5, 7, 9, 26, 13). Мода – когда не нужна высокая точность, но важна быстрота определения м. ц. т.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных