Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Стохастические фракталы




Типичный представитель данного класса фракталов «Плазма».

Рис. Плазма

Для ее построения возьмем прямоугольник и для каждого его угла определим цвет. Далее находим центральную точку прямоугольника и раскрашиваем ее в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число – тем более «рваным» будет рисунок. Если, например, сказать, что цвет точки это высота над уровнем моря, то получим вместо плазмы – горный массив. Именно на этом принципе моделируются горы в большинстве программ. С помощью алгоритма, похожего на плазму строится карта высот, к ней применяются различные фильтры, накладываем текстуру.

Системы итерируемых функций (IFS – Iterated Function Systems)

Эта группа фракталов получила широкое распространение благодаря работам Майкла Барнсли из технологического института штата Джорджия. Он пытался кодировать изображения с помощью фракталов. Запатентовав несколько идей по кодированию изображений с помощью фракталов, он основал фирму «Iterated Systems», которая через некоторое время выпустила первый продукт «Images Incorporated», в котором можно было изображения переводить из растровой формы во фрактальную FIF.

Это позволяло добиться высоких степеней сжатия. При низких степенях сжатия качество рисунков уступало качеству формата JPEG, но при высоких картинки получались более качественными. В любом случае этот формат не прижился, но работы по его усовершенствованию ведутся до сих пор. Ведь этот формат не зависит от разрешения изображения. Так как изображение закодировано с помощью формул, то его можно увеличить до любых размеров и при этом будут появляться новые детали, а не просто увеличится размер пикселей.

Если в L–systems (алгебраических фракталах) речь шла о замене прямой линии неким полигоном, то в IFS мы в ходе каждой итерации заменяем некий полигон (квадрат, треугольник, круг) на набор полигонов, каждый их которых подвергнут аффинным преобразованиям. При аффинных преобразованиях исходное изображение меняет масштаб, параллельно переносится вдоль каждой из осей и вращается на некоторый угол.

 

Фракталы и хаос

Понятие фрактал неразрывно связано с понятием хаос. Хаос – это отсутствие предсказуемости. Хаос возникает в динамических системах, когда для двух очень близких начальных значений система ведет себя совершенно по–разному. Пример хаотичной динамической системы – погода (метеорологи шутят: «Взмах крыла бабочки в Техасе приводит к урагану во Флориде»).

Хорошо проиллюстрировать хаотичное поведение можно с помощью так называемого logistic equation x=c*x(1–x). Пришло это выражение из биологии, т.к. это грубая модель популяции животных. Так вот при исследовании поведения этой функции выяснилась интересная ее особенность. Если с – фактор роста популяции находится в пределах от 1 до 3, то через некоторое количество итераций популяция стабилизируется.

При с=3 наша функция раздваивается – через определенное число итераций приходим к ситуации, когда высокая популяция в один год сменяется низкой в следующий и значение выражения как бы скачет между двумя значениями.

При с=3.45 она раздваивается снова и у нас уже имеется четырехлетний цикл.

Далее при росте с функция раздваивается все быстрее и быстрее: при с=3.54, с=3.564, с=3.569...

И в точке 3.57 начинается хаос. Значения выражения не имеют какой либо периодичности или структуры. На рисунке изображена зависимость поведения функции от величины с.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных