ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Перспективные разработкиВ течение около 50 лет производители магнитных накопителей использовали метод, именуемый параллельной магнитной записью (LMR – Longitudinal Magnetic Recording), в которой вектор намагниченности для каждого бита информации расположен параллельно поверхности носителя (пленки или диска). В то время как в исторической ретроспективе поверхностная плотность записи удваивалась приблизительно каждый год, в конце концов скорость этого роста замедлилась, и за прошедшие десять лет продольная магнитная запись достигла фундаментального предела плотности записи, который составил около 100-200 гигабит на квадратный дюйм. Этот предел получил название «суперпарамагнитного предела», обусловленного температурными колебаниями в момент поляризации гранул (изменения состояний) во время записи на устройство. Эффект парамагнетизма ведет к возникновению полей рассеяния и неправильной ориентации зарядов на плоскости диска – «битовым ошибкам». Чтобы расширить возможности HDD, была придумана перпендикулярная магнитная запись (PMR – Perpendicular Magnetic Recording), способная обеспечить запись 1 ТБ данных на дисковую пластину: биты поляризовались «перпендикулярно плоскости», а не «параллельно». Изначально технология PMR рассматривалась как временное решение, но она стала использоваться повсеместно. Однако PMR имеет все те же проблемы с устойчивостью чтения и записи, как в случае с LMR. Поэтому Western Digital и Seagate работают над дисками, использующими технологию термоассистируемой магнитной записи (HAMR – Heat Assisted Magnetic Recording), с помощью которой можно будет создать диски формата 3,5” с емкостью до 60 ТБ. HAMR призвана заменить PMR и использует небольшой лазер для нагрева части диска, на которую планируется осуществить запись. Это позволяет уменьшить размеры магнитной области, хранящей один бит информации, и увеличить стабильность хранения данных. Однако все вышеописанные технологии являются предшественниками новой многослойной 3D-записи. Еще в конце 2013 года исследователи из Международного университета Флориды показали, что 3D-запись обладаетколоссальным потенциалом и позволяет создавать магнитные носители огромной емкости. В ML-3D вместо одного магнитного слоя используются сразу три, между которыми проложен изолятор. Для записи используется специальная магнитная головка. Чтение осуществляется с помощью более слабой магнитной головки, путем вычисления векторной суммы наностолбцов. На рисунке ниже показаны наборы битов, сформированные магнитным полем разной силы и направления и сгруппированные в наноколонки. Еще одной интересной и перспективной технологией является память с фазовым переходом (PCM – Phase Change Memory), которая рассматривается как будущаязамена Далекое будущее: В мае 2014 года IBM и Fujifilm анонсировали ленточное устройство хранения, которое может хранить 85,9 млрд бит на квадратном дюйме магнитной ленты. Подобная плотность позволяет создавать картриджи с емкостью до 154 ТБ, что в 62 раза превышает возможности картриджей LTO-6. Для получения столь высокой плотности эксперты Fujifilm разработали технологиюNanocubic, благодаря которой можно сформировать сверхтонкий магнитный слой. Чем тоньше магнитный слой, тем больше намагниченных доменов размещается на единице площади магнитной ленты. Коммерческие реализации технологии могут появиться в течение ближайших 10 лет. Однако самой перспективной и многообещающей технологией будущего являютсяхранилища на основе ДНК. Возможно это одна из самых странных технологий будущего. В 2012 году исследователи из Гарварда смогли закодировать в ДНК книгу из 53 400 слов, одиннадцать JPEG-изображений и одну программу на JavaScript. ДНК предлагает невероятную плотность записи – 2,2 петабайта на грамм. Это означает, что ДНК-диск размером с чайную ложку сможет уместить все данные, существующие в мире – каждую песню, каждую книгу, каждое видео. Помимо небольших размеров, еще одним достоинством ДНК-хранилищ является долговечность. По словам Джорджа Черча (George Church) из Гарварда, вы можете оставить ДНК-диск где угодно, хоть в пустыне, но данные останутся на нем даже 400 000 лет спустя.Процесс синтеза последовательности ДНК похож на нанизывание жемчуга на нитку. В этом случае информация кодируется в виде традиционных нулей и единиц. Эти значения присваиваются определенным химическим компонентам, мономерам, которые при помощи химических методов сцепляются в одну цепь, образуя полимеры. Чтобы прочитать записанную информацию, достаточно воспользоваться масс-спектрометром – устройством для считывания ДНК-последовательности.Для проверки того, как долго данные могут хранится в ДНК, ученые закодировали83 килобайта данных (по данным New Scientist, стоимость кодирования 83 килобайт составила $1500). Материалом послужили Швейцарский Федеральный устав от 1291 года и палимпсест Архимеда. Выбор этих документов, по мнению ученых, показывает не только потенциальную применимость метода, но и его историческую важность. По оценкам представителей ETH Zurich, эти данные останутся неизменными на протяжении миллиона лет (если ДНК подвергнется заморозке).Самым большим препятствием, которое пока еще не позволяет использовать ДНК для хранения информации на практике, является время. Даже с использованием современных технологий расшифровки, чтение молекулы ДНК занимает многие часы – на несколько порядков больше, чем чтение обычного файла на компьютере. Потому этот тип хранилищ не подходит для часто используемых данных. Более того, ученые до сих пор заносят информацию в искусственную ДНК и лишь после этого помещают её в бактерию. Как известно, не все технологии начинают использоваться повсеместно и становятся широкодоступны. Но команда исследователей из США недавно осуществила прорыв, в котором показала, что можно хранить данные в так называемых «мягких веществах». Согласно новому исследованию, микроскопические частицы в жидкости могут быть использованы, чтобы кодировать те же нули и единицы, прямо как в современных жёстких дисках. В теории кластеры таких частиц однажды смогут хранить до 1 ТБ данных в столовой ложке жидкости.Термин «мягкое вещество» может относиться к жидкостям, полимерам и даже биоматериалам. Все эти вещества обладают предсказуемым поведением под воздействием различных температур – меняют форму на молекулярном уровне. Команда, ответственная за исследование, использовала определенный тип коллоидной суспензии со специальными наночастицами, сохраняющими свои свойства.Такие частицы при нагреве организуются в группы. В данном конкретном случае наночастицы собирались в группы из четырех и более штук, в то время как одна из них являлась центром. Размеры связок едва превышали 5 микрометров в диаметре, но команда ученых смогла визуально отметить происходящие изменения.Кластеры из четырех частиц могут находиться всего в двух состояниях, которые можно закодировать как ноль и единицу. Однако это всего лишь первый шажок в сторону «жидких хранилищ». Сейчас необходимо найти надежный способ формировать кластеры в больших объемах жидкости и быстро считывать записанные данные.Но, вероятно, самой передовой технологией будущего могут стать квантовые хранилища. Сегодня ученые изучают способы хранения данных с применением законов квантовой физики – то есть пытаются закодировать информацию с помощью управляемой ориентации спина электрона. На данный момент таким способом можно сохранить небольшое количество данных на очень непродолжительное время (менее дня), но если все получится, то, возможно, благодаря квантовой запутанности мы получим возможность мгновенно синхронизировать данные между двумя точками.
Не нашли, что искали? Воспользуйтесь поиском:
|