ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Практическая работа № 12
Тема: Многогранники. Цель: Знать формулы вычисления боковой и полной поверхности призмы. пирамиды, параллелепипеда и уметь применять их к решению задач.
Методические рекомендации Площадью поверхности многогранника по определению считается сумма площадей, входящих в эту поверхность многоугольников. Основные формулы
Варианты заданий практической работы 1 вариант
1. Основанием прямой призмы ABCDA1B1C1D1 является параллелограмм ABCD со сторонами 6 см и 12 см и углом 60°. Диагональ B1D призмы образует с плоскостью основания угол в 30°. Найдите площадь полной поверхности призмы. 2. Сторона основания правильной треугольной пирамиды равна 3 см, а угол между боковой гранью и основанием равен 45°. Найдите площадь полной поверхности пирамиды. 3. Сторона основания правильной треугольной пирамиды равна а, а боковая грань наклонена к плоскости основания под углом a. Найдите площадь полной поверхности пирамиды.
2 вариант 1. Основанием прямой призмы ABCDA1B1C1D1 является параллелограмм ABCD со сторонами 4 см и 4 см и углом 30°. Диагональ AC1 призмы образует с плоскостью основания угол в 60°. Найдите площадь полной поверхности призмы. 2. Высота основания правильной треугольной пирамиды равна 3 см, а угол между боковой гранью и основанием пирамиды равен 45°. Найдите площадь полной поверхности пирамиды. 3. Основание пирамиды – квадрат со стороной а. Одна из боковых граней перпендикулярна основанию, а две смежные с ней грани составляют с плоскостью основания угол a. Найдите площадь полной поверхности пирамиды.
3 вариант
1. Основанием прямой призмы ABCDA1B1C1D1 является параллелограмм ABCD со сторонами 6 см и 6 см и углом 150°. Диагональ B1D призмы образует с плоскостью основания угол в 60°. Найдите площадь полной поверхности призмы. 2. Сторона правильной треугольной пирамиды равна 4 см, а угол между боковым ребром и основанием равен 60°. Найдите площадь полной поверхности пирамиды. 3. Высота правильной четырехугольной пирамиды равна H, а боковое ребро составляет с основанием угол a. Найдите площадь полной поверхности пирамиды.
4 вариант
1. Основанием прямой призмы ABCDA1B1C1D1 является параллелограмм ABCD со сторонами 3 см и 6 см и углом 120°. Диагональ AC1 призмы образует с плоскостью основания угол в 30°. Найдите площадь полной поверхности призмы. 2. Высота основания правильной треугольной пирамиды равна 4 см, а угол между боковым ребром и основанием пирамиды равен 30°. Найдите площадь полной поверхности пирамиды. 3. Основание прямоугольного параллелепипеда – квадрат. Угол между диагоналями смежных граней, исходящих из одной вершины, равен a. Диагональ параллелепипеда равна d. Найдите площадь полной поверхности параллелепипеда.
Не нашли, что искали? Воспользуйтесь поиском:
|