Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Характеристика d-элементов VI группы




Побочная подгруппа VI группы представлена следующими элементами: Сr, Mo и W. Все они являются d-элементами, так как у них застраивается электронами d-подуровень предвнешнего уровня. Валентными электронами этих элементов являются электроны внешнего S-подуровня и предвнешнего d-подуровня ‑ всего 6 электронов.

Электронная конфигурация внешнего уровня и предвнешнего d-подуровня: Сr – 3d54S1; Мо – 4d55S1; W – 5d46S2.

d–элементы 6 группы занимают 4 место в своей декаде d–элементов, поэтому d–подуровень должен содержать 4 электрона, а на внешнем уровне должны находиться два s–электрона, как это и наблюдается для вольфрама. Для хрома и молибдена имеет место «проскок» одного s–электрона с внешнего уровня на предвнешний d–подуровень, в результате чего каждая d-орбиталь будет занята одним электроном, что соответствует наиболее устойчивому состоянию атома.

 

│↑│↑│↑│↑│ │ (n –1)d → │↑│↑│↑│↑│↑│ (n – 1)d

nS│↑↓│ nS │↑│

Параметры атомов d-элементов VI группы представлены в таблице 11.1.

Таблица 11.1 – Основные параметры атомов элементов VI группы

  Радиус атома rа, нм Радиус иона r Э6+, нм Е ЭоЭ+, эВ Ar
Сr 0,127 0,035 6,76  
Mo 0,137 0,065 7,10  
W 0,140 0,065 7,98  

Анализируя эти данные, можно сказать, что наблюдается общая для всех d-элементов закономерность: радиусы атомов сверху вниз в подгруппе увеличиваются, но незначительно. Поскольку масса атомов в том же ряду сильно возрастает, то это приводит к уплотнению электронных оболочек у молибдена и особенно у вольфрама. Вырвать электрон из такой уплотненной структуры труднее, поэтому энергия ионизации при переходе от хрома к вольфраму возрастает, вследствие чего химическая активность элементов сверху вниз в подгруппе уменьшается. Ввиду того, что молибден и вольфрам имеют примерно одинаковый атомный и ионный радиусы, по свойствам они ближе друг к другу, чем к хрому.

В соединениях хром и его аналоги проявляют степени окисления (С.О.) 0, +1, +2, +3, +4, +5 и +6. Максимальная С.О. соответствует числу валентных электронов. Характерные С.О. хрома +3 и в меньшей мере +6 и +2. У молибдена и вольфрама, как и у других 4d- и 5d-элементов, наиболее характерна высшая С.О., то есть +6. Таким образом, для элементов подгруппы Cr наблюдается общая для d-элементов закономерность: повышение в группе сверху вниз устойчивой С.О. Поэтому окислительная способность соединений, где элементы проявляют высшую С.О., равную +6, сверху вниз в подгруппе уменьшается, так как устойчивость соединений в этом ряду увеличивается. Например, в ряду кислот:

Н2СrO4 ↓ устойчивость Cr+6 ↑ окислительная способность

Н2МоО4 ↑увеличивается Мо+6 ↓ уменьшается

Н24 ↓ уменьшает W+6 ↓ уменьшает

Для Cr, Mo, W наиболее типичны координационные числа 6 и 4. Известны также производные, в которых к.ч. Мо и W достигает 8.

Примеры: [Cr(OH)4]-;[Cr(H2O)6]3+ ; [MoF6]3-; [MoF8]2-; [WF8]2-

При этом в образовании связей могут участвовать d-орбитали предвнешнего уровня, а также s- и р-орбитали внешнего уровня.

Характер связи элементов подгруппы Сr в соединениях определяется во многом С.О. элемента. Для Cr, Mo, W при низких С.О. (+1, +2) характерны ионные связи, а при высоких С.О. – ковалентные связи. В соответствии с этим Сr+2О – основной оксид, Сr2+3О3 – амфотерный, а Сr+6О3 – кислотный. Аналогично Сr(OH)2 – основание, Сr(OH)3 – амфотерный гидроксид, Н2СrО4 – кислота.

Содержание хрома в земной коре составляет 0,02% (масс), молибдена – 10-3% (масс), вольфрама – 7 ∙ 10-3% (масс). Основной рудой хрома является хромистый железняк Fe(CrO2)2 (хромит). Молибден встречается в виде минерала молибденита МоS2 (молибденовый блеск), а также молибдатов: РвМоО4 (вульфенит) и МgMoO4. Важнейшие вольфрамовые руды – вольфрамит (смесь FeWO4 и МnWO4), шеелит

СаWO4 и стольцит РвWO4.

Для получения чистого хрома сначала получают оксид Cr2O3, который затем восстанавливают алюмотермическим способом:

Cr2O3 + 2Al Al2O3 + 2Cr.

Для целей металлургии хром получают в виде сплава с железом (феррохром). Для этого хромистый железняк восстанавливают углем в электрической печи:

Fe(CrO2)2 + 4C Fe + 2Cr + 4CO.

Молибден и вольфрам получают, переводя перечисленные выше минералы в оксиды, из которых металл восстанавливают водородом при высоких температурах:

2МоS2 + 7O2 2MoO3 + 4SO2;

MoO3 + 3H2 Mo + 3H2O.

В виде простых веществ хром, молибден и вольфрам – серовато-белые блестящие металлы. Все они тугоплавки, а вольфрам является самым тугоплавким из металлов (Т пл.= 3380оС).

Электропроводность металлов при переходе от хрома к вольфраму в целом увеличивается и составляет для молибдена и вольфрама приблизительно 30% электропроводности серебра. На свойства металлов в большой степени влияют примеси. Так, технический хром – один из самых твердых металлов, в то время как чистый хром пластичен.

 

Как и тантал, ниобий совершенно не вызывает раздражения тканей человеческого тела, срастается с ними и остается инертным даже после длительного воздействия жидкой среды организма. Высокая коррозионная стойкость ниобия позволила использовать его в медицине. Ниобиевые нити не вызывают раздражения живой ткани и хорошо сращиваются с ней. Восстановительная хирургия успешно использует такие нити для сшивания порванных сухожилий, кровеносных сосудов и даже нервов.

Соединения ниобия ядовиты. Предельно допустимая концентрация ниобия в воде 0,01 мг/л.

Титан в медицине.

Конструкторов медицинской техники, медицинского инструментария и врачей разных профессий в новом конструкционном металле привлекают прежде всего биологическая инертность по отношению к организму живого существа в сочетании с высокими механическими свойствами, антикоррозионной стойкостью, а также дешевизна и доступность. Эти качества титана, усиленные специфическими свойствами, и обеспечили очень большой интерес к нему и интенсивное проведение конструкторских работ и клинических испытаний самых различных изделий. Известно, что по коррозионной стойкости во многих медицинских агрессивных средах титан не уступает платине; он стоек в растворах кислот и щелочей. Скорость коррозии титана в морской воде (по своему химическому составу очень похожей на лимфу) — 0,00002 мм/год или 0,02 мм в 1000 лет. Титан и его сплавы устойчивы и перекиси водорода, бензине, феноле, формальдегиде. После многократной стерилизации кипячением и обработки в автоклаве, многомесячной выдержки в 3%-ном растворе хлорамина, 96-градусиом этиловом спирте, растворе сулемы, трихлорэтилене следов коррозии на титановых сплавах не обнаружено. Точечная коррозия наблюдается у титановых сплавов лишь после пребывания в течение нескольких суток в 10%-ной спиртовой настойке йода.

Титан и его сплавы обладают высокой усталостной прочностью при знакопеременных нагрузках, что очень важно при изготовлении внутрикостных фиксаторов, наружных и внутренних протезов, которые постоянно подвергаются переменным нагрузкам.

Титан — пластичный металл; он хорошо поддается механической обработке: резанию, сверлению, фрезерованию, шлифованию. Изготавливать из него различные конструкции не труднее, чем из нержавеющей стали. Титан — немагнитный материал с низкой электропроводностью, что особенно ценно, так как благодаря этому можно использовать физиотерапию для лечения больных, в организме которых находятся титановые конструкции. Все это делает титан весьма перспективным для широкого применения в медицине.

Но самым важным результатом многолетних и тщательных исследований оказалось то, что титан является инертным металлом по отношению к биологической среде. Конструкции из титановых сплавов хорошо переносится человеческим организмом, обрастает костной и мышечной тканью. Металл практически не корродирует в агрессивных средах человеческого тела, а структура тканей, окружающих титановые конструкции, не изменяется на протяжении длительного времени. Своей химической индифферентностью титан превосходит не только все нержавеющие стали, но и нашедший в последнее время широкое применение «виталлиум» — сплав на кобальтовой основе. Ценно, что технически чистый титан содержит гораздо меньше примесей, чем другие используемые в медицине сплавы.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных